| 1 | /* |
| 2 | * Copyright (C) 2008 Apple Inc. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * 1. Redistributions of source code must retain the above copyright |
| 8 | * notice, this list of conditions and the following disclaimer. |
| 9 | * 2. Redistributions in binary form must reproduce the above copyright |
| 10 | * notice, this list of conditions and the following disclaimer in the |
| 11 | * documentation and/or other materials provided with the distribution. |
| 12 | * |
| 13 | * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| 14 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| 15 | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| 16 | * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR |
| 17 | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 18 | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 19 | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 20 | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| 21 | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 22 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| 23 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 24 | */ |
| 25 | |
| 26 | #ifndef AbstractMacroAssembler_h |
| 27 | #define AbstractMacroAssembler_h |
| 28 | |
| 29 | #include <wtf/Platform.h> |
| 30 | |
| 31 | #include <MacroAssemblerCodeRef.h> |
| 32 | #include <CodeLocation.h> |
| 33 | #include <wtf/Noncopyable.h> |
| 34 | #include <wtf/UnusedParam.h> |
| 35 | |
| 36 | #if ENABLE(ASSEMBLER) |
| 37 | |
| 38 | namespace JSC { |
| 39 | |
| 40 | class LinkBuffer; |
| 41 | class RepatchBuffer; |
| 42 | |
| 43 | template <class AssemblerType> |
| 44 | class AbstractMacroAssembler { |
| 45 | public: |
| 46 | typedef AssemblerType AssemblerType_T; |
| 47 | |
| 48 | typedef MacroAssemblerCodePtr CodePtr; |
| 49 | typedef MacroAssemblerCodeRef CodeRef; |
| 50 | |
| 51 | class Jump; |
| 52 | |
| 53 | typedef typename AssemblerType::RegisterID RegisterID; |
| 54 | typedef typename AssemblerType::FPRegisterID FPRegisterID; |
| 55 | typedef typename AssemblerType::JmpSrc JmpSrc; |
| 56 | typedef typename AssemblerType::JmpDst JmpDst; |
| 57 | |
| 58 | |
| 59 | // Section 1: MacroAssembler operand types |
| 60 | // |
| 61 | // The following types are used as operands to MacroAssembler operations, |
| 62 | // describing immediate and memory operands to the instructions to be planted. |
| 63 | |
| 64 | |
| 65 | enum Scale { |
| 66 | TimesOne, |
| 67 | TimesTwo, |
| 68 | TimesFour, |
| 69 | TimesEight, |
| 70 | }; |
| 71 | |
| 72 | // Address: |
| 73 | // |
| 74 | // Describes a simple base-offset address. |
| 75 | struct Address { |
| 76 | explicit Address(RegisterID base, int32_t offset = 0) |
| 77 | : base(base) |
| 78 | , offset(offset) |
| 79 | { |
| 80 | } |
| 81 | |
| 82 | RegisterID base; |
| 83 | int32_t offset; |
| 84 | }; |
| 85 | |
| 86 | // ImplicitAddress: |
| 87 | // |
| 88 | // This class is used for explicit 'load' and 'store' operations |
| 89 | // (as opposed to situations in which a memory operand is provided |
| 90 | // to a generic operation, such as an integer arithmetic instruction). |
| 91 | // |
| 92 | // In the case of a load (or store) operation we want to permit |
| 93 | // addresses to be implicitly constructed, e.g. the two calls: |
| 94 | // |
| 95 | // load32(Address(addrReg), destReg); |
| 96 | // load32(addrReg, destReg); |
| 97 | // |
| 98 | // Are equivalent, and the explicit wrapping of the Address in the former |
| 99 | // is unnecessary. |
| 100 | struct ImplicitAddress { |
| 101 | ImplicitAddress(RegisterID base) |
| 102 | : base(base) |
| 103 | , offset(0) |
| 104 | { |
| 105 | } |
| 106 | |
| 107 | ImplicitAddress(Address address) |
| 108 | : base(address.base) |
| 109 | , offset(address.offset) |
| 110 | { |
| 111 | } |
| 112 | |
| 113 | RegisterID base; |
| 114 | int32_t offset; |
| 115 | }; |
| 116 | |
| 117 | // BaseIndex: |
| 118 | // |
| 119 | // Describes a complex addressing mode. |
| 120 | struct BaseIndex { |
| 121 | BaseIndex(RegisterID base, RegisterID index, Scale scale, int32_t offset = 0) |
| 122 | : base(base) |
| 123 | , index(index) |
| 124 | , scale(scale) |
| 125 | , offset(offset) |
| 126 | { |
| 127 | } |
| 128 | |
| 129 | RegisterID base; |
| 130 | RegisterID index; |
| 131 | Scale scale; |
| 132 | int32_t offset; |
| 133 | }; |
| 134 | |
| 135 | // AbsoluteAddress: |
| 136 | // |
| 137 | // Describes an memory operand given by a pointer. For regular load & store |
| 138 | // operations an unwrapped void* will be used, rather than using this. |
| 139 | struct AbsoluteAddress { |
| 140 | explicit AbsoluteAddress(void* ptr) |
| 141 | : m_ptr(ptr) |
| 142 | { |
| 143 | } |
| 144 | |
| 145 | void* m_ptr; |
| 146 | }; |
| 147 | |
| 148 | // ImmPtr: |
| 149 | // |
| 150 | // A pointer sized immediate operand to an instruction - this is wrapped |
| 151 | // in a class requiring explicit construction in order to differentiate |
| 152 | // from pointers used as absolute addresses to memory operations |
| 153 | struct ImmPtr { |
| 154 | explicit ImmPtr(void* value) |
| 155 | : m_value(value) |
| 156 | { |
| 157 | } |
| 158 | |
| 159 | intptr_t asIntptr() |
| 160 | { |
| 161 | return reinterpret_cast<intptr_t>(m_value); |
| 162 | } |
| 163 | |
| 164 | void* m_value; |
| 165 | }; |
| 166 | |
| 167 | // Imm32: |
| 168 | // |
| 169 | // A 32bit immediate operand to an instruction - this is wrapped in a |
| 170 | // class requiring explicit construction in order to prevent RegisterIDs |
| 171 | // (which are implemented as an enum) from accidentally being passed as |
| 172 | // immediate values. |
| 173 | struct Imm32 { |
| 174 | explicit Imm32(int32_t value) |
| 175 | : m_value(value) |
| 176 | #if CPU(ARM) |
| 177 | , m_isPointer(false) |
| 178 | #endif |
| 179 | { |
| 180 | } |
| 181 | |
| 182 | #if !CPU(X86_64) |
| 183 | explicit Imm32(ImmPtr ptr) |
| 184 | : m_value(ptr.asIntptr()) |
| 185 | #if CPU(ARM) |
| 186 | , m_isPointer(true) |
| 187 | #endif |
| 188 | { |
| 189 | } |
| 190 | #endif |
| 191 | |
| 192 | int32_t m_value; |
| 193 | #if CPU(ARM) |
| 194 | // We rely on being able to regenerate code to recover exception handling |
| 195 | // information. Since ARMv7 supports 16-bit immediates there is a danger |
| 196 | // that if pointer values change the layout of the generated code will change. |
| 197 | // To avoid this problem, always generate pointers (and thus Imm32s constructed |
| 198 | // from ImmPtrs) with a code sequence that is able to represent any pointer |
| 199 | // value - don't use a more compact form in these cases. |
| 200 | bool m_isPointer; |
| 201 | #endif |
| 202 | }; |
| 203 | |
| 204 | |
| 205 | // Section 2: MacroAssembler code buffer handles |
| 206 | // |
| 207 | // The following types are used to reference items in the code buffer |
| 208 | // during JIT code generation. For example, the type Jump is used to |
| 209 | // track the location of a jump instruction so that it may later be |
| 210 | // linked to a label marking its destination. |
| 211 | |
| 212 | |
| 213 | // Label: |
| 214 | // |
| 215 | // A Label records a point in the generated instruction stream, typically such that |
| 216 | // it may be used as a destination for a jump. |
| 217 | class Label { |
| 218 | template<class TemplateAssemblerType> |
| 219 | friend class AbstractMacroAssembler; |
| 220 | friend class Jump; |
| 221 | friend class MacroAssemblerCodeRef; |
| 222 | friend class LinkBuffer; |
| 223 | |
| 224 | public: |
| 225 | Label() |
| 226 | { |
| 227 | } |
| 228 | |
| 229 | Label(AbstractMacroAssembler<AssemblerType>* masm) |
| 230 | : m_label(masm->m_assembler.label()) |
| 231 | { |
| 232 | } |
| 233 | |
| 234 | bool isUsed() const { return m_label.isUsed(); } |
| 235 | void used() { m_label.used(); } |
| 236 | private: |
| 237 | JmpDst m_label; |
| 238 | }; |
| 239 | |
| 240 | // DataLabelPtr: |
| 241 | // |
| 242 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| 243 | // patched after the code has been generated. |
| 244 | class DataLabelPtr { |
| 245 | template<class TemplateAssemblerType> |
| 246 | friend class AbstractMacroAssembler; |
| 247 | friend class LinkBuffer; |
| 248 | public: |
| 249 | DataLabelPtr() |
| 250 | { |
| 251 | } |
| 252 | |
| 253 | DataLabelPtr(AbstractMacroAssembler<AssemblerType>* masm) |
| 254 | : m_label(masm->m_assembler.label()) |
| 255 | { |
| 256 | } |
| 257 | |
| 258 | private: |
| 259 | JmpDst m_label; |
| 260 | }; |
| 261 | |
| 262 | // DataLabel32: |
| 263 | // |
| 264 | // A DataLabelPtr is used to refer to a location in the code containing a pointer to be |
| 265 | // patched after the code has been generated. |
| 266 | class DataLabel32 { |
| 267 | template<class TemplateAssemblerType> |
| 268 | friend class AbstractMacroAssembler; |
| 269 | friend class LinkBuffer; |
| 270 | public: |
| 271 | DataLabel32() |
| 272 | { |
| 273 | } |
| 274 | |
| 275 | DataLabel32(AbstractMacroAssembler<AssemblerType>* masm) |
| 276 | : m_label(masm->m_assembler.label()) |
| 277 | { |
| 278 | } |
| 279 | |
| 280 | private: |
| 281 | JmpDst m_label; |
| 282 | }; |
| 283 | |
| 284 | // Call: |
| 285 | // |
| 286 | // A Call object is a reference to a call instruction that has been planted |
| 287 | // into the code buffer - it is typically used to link the call, setting the |
| 288 | // relative offset such that when executed it will call to the desired |
| 289 | // destination. |
| 290 | class Call { |
| 291 | template<class TemplateAssemblerType> |
| 292 | friend class AbstractMacroAssembler; |
| 293 | |
| 294 | public: |
| 295 | enum Flags { |
| 296 | None = 0x0, |
| 297 | Linkable = 0x1, |
| 298 | Near = 0x2, |
| 299 | LinkableNear = 0x3, |
| 300 | }; |
| 301 | |
| 302 | Call() |
| 303 | : m_flags(None) |
| 304 | { |
| 305 | } |
| 306 | |
| 307 | Call(JmpSrc jmp, Flags flags) |
| 308 | : m_jmp(jmp) |
| 309 | , m_flags(flags) |
| 310 | { |
| 311 | } |
| 312 | |
| 313 | bool isFlagSet(Flags flag) |
| 314 | { |
| 315 | return m_flags & flag; |
| 316 | } |
| 317 | |
| 318 | static Call fromTailJump(Jump jump) |
| 319 | { |
| 320 | return Call(jump.m_jmp, Linkable); |
| 321 | } |
| 322 | |
| 323 | JmpSrc m_jmp; |
| 324 | private: |
| 325 | Flags m_flags; |
| 326 | }; |
| 327 | |
| 328 | // Jump: |
| 329 | // |
| 330 | // A jump object is a reference to a jump instruction that has been planted |
| 331 | // into the code buffer - it is typically used to link the jump, setting the |
| 332 | // relative offset such that when executed it will jump to the desired |
| 333 | // destination. |
| 334 | class Jump { |
| 335 | template<class TemplateAssemblerType> |
| 336 | friend class AbstractMacroAssembler; |
| 337 | friend class Call; |
| 338 | friend class LinkBuffer; |
| 339 | public: |
| 340 | Jump() |
| 341 | { |
| 342 | } |
| 343 | |
| 344 | Jump(JmpSrc jmp) |
| 345 | : m_jmp(jmp) |
| 346 | { |
| 347 | } |
| 348 | |
| 349 | void link(AbstractMacroAssembler<AssemblerType>* masm) |
| 350 | { |
| 351 | masm->m_assembler.linkJump(m_jmp, masm->m_assembler.label()); |
| 352 | } |
| 353 | |
| 354 | void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) |
| 355 | { |
| 356 | masm->m_assembler.linkJump(m_jmp, label.m_label); |
| 357 | } |
| 358 | |
| 359 | private: |
| 360 | JmpSrc m_jmp; |
| 361 | }; |
| 362 | |
| 363 | // JumpList: |
| 364 | // |
| 365 | // A JumpList is a set of Jump objects. |
| 366 | // All jumps in the set will be linked to the same destination. |
| 367 | class JumpList { |
| 368 | friend class LinkBuffer; |
| 369 | |
| 370 | public: |
| 371 | typedef Vector<Jump, 16> JumpVector; |
| 372 | |
| 373 | void link(AbstractMacroAssembler<AssemblerType>* masm) |
| 374 | { |
| 375 | size_t size = m_jumps.size(); |
| 376 | for (size_t i = 0; i < size; ++i) |
| 377 | m_jumps[i].link(masm); |
| 378 | m_jumps.clear(); |
| 379 | } |
| 380 | |
| 381 | void linkTo(Label label, AbstractMacroAssembler<AssemblerType>* masm) |
| 382 | { |
| 383 | size_t size = m_jumps.size(); |
| 384 | for (size_t i = 0; i < size; ++i) |
| 385 | m_jumps[i].linkTo(label, masm); |
| 386 | m_jumps.clear(); |
| 387 | } |
| 388 | |
| 389 | void append(Jump jump) |
| 390 | { |
| 391 | m_jumps.append(jump); |
| 392 | } |
| 393 | |
| 394 | void append(JumpList& other) |
| 395 | { |
| 396 | m_jumps.append(other.m_jumps.begin(), other.m_jumps.size()); |
| 397 | } |
| 398 | |
| 399 | bool empty() |
| 400 | { |
| 401 | return !m_jumps.size(); |
| 402 | } |
| 403 | |
| 404 | const JumpVector& jumps() { return m_jumps; } |
| 405 | |
| 406 | private: |
| 407 | JumpVector m_jumps; |
| 408 | }; |
| 409 | |
| 410 | |
| 411 | // Section 3: Misc admin methods |
| 412 | |
| 413 | static CodePtr trampolineAt(CodeRef ref, Label label) |
| 414 | { |
| 415 | return CodePtr(AssemblerType::getRelocatedAddress(ref.m_code.dataLocation(), label.m_label)); |
| 416 | } |
| 417 | |
| 418 | size_t size() |
| 419 | { |
| 420 | return m_assembler.size(); |
| 421 | } |
| 422 | |
| 423 | Label label() |
| 424 | { |
| 425 | return Label(this); |
| 426 | } |
| 427 | |
| 428 | Label align() |
| 429 | { |
| 430 | m_assembler.align(16); |
| 431 | return Label(this); |
| 432 | } |
| 433 | |
| 434 | ptrdiff_t differenceBetween(Label from, Jump to) |
| 435 | { |
| 436 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| 437 | } |
| 438 | |
| 439 | ptrdiff_t differenceBetween(Label from, Call to) |
| 440 | { |
| 441 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| 442 | } |
| 443 | |
| 444 | ptrdiff_t differenceBetween(Label from, Label to) |
| 445 | { |
| 446 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| 447 | } |
| 448 | |
| 449 | ptrdiff_t differenceBetween(Label from, DataLabelPtr to) |
| 450 | { |
| 451 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| 452 | } |
| 453 | |
| 454 | ptrdiff_t differenceBetween(Label from, DataLabel32 to) |
| 455 | { |
| 456 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| 457 | } |
| 458 | |
| 459 | ptrdiff_t differenceBetween(DataLabelPtr from, Jump to) |
| 460 | { |
| 461 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| 462 | } |
| 463 | |
| 464 | ptrdiff_t differenceBetween(DataLabelPtr from, DataLabelPtr to) |
| 465 | { |
| 466 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_label); |
| 467 | } |
| 468 | |
| 469 | ptrdiff_t differenceBetween(DataLabelPtr from, Call to) |
| 470 | { |
| 471 | return AssemblerType::getDifferenceBetweenLabels(from.m_label, to.m_jmp); |
| 472 | } |
| 473 | |
| 474 | protected: |
| 475 | AssemblerType m_assembler; |
| 476 | |
| 477 | friend class LinkBuffer; |
| 478 | friend class RepatchBuffer; |
| 479 | |
| 480 | static void linkJump(void* code, Jump jump, CodeLocationLabel target) |
| 481 | { |
| 482 | AssemblerType::linkJump(code, jump.m_jmp, target.dataLocation()); |
| 483 | } |
| 484 | |
| 485 | static void linkPointer(void* code, typename AssemblerType::JmpDst label, void* value) |
| 486 | { |
| 487 | AssemblerType::linkPointer(code, label, value); |
| 488 | } |
| 489 | |
| 490 | static void* getLinkerAddress(void* code, typename AssemblerType::JmpSrc label) |
| 491 | { |
| 492 | return AssemblerType::getRelocatedAddress(code, label); |
| 493 | } |
| 494 | |
| 495 | static void* getLinkerAddress(void* code, typename AssemblerType::JmpDst label) |
| 496 | { |
| 497 | return AssemblerType::getRelocatedAddress(code, label); |
| 498 | } |
| 499 | |
| 500 | static unsigned getLinkerCallReturnOffset(Call call) |
| 501 | { |
| 502 | return AssemblerType::getCallReturnOffset(call.m_jmp); |
| 503 | } |
| 504 | |
| 505 | static void repatchJump(CodeLocationJump jump, CodeLocationLabel destination) |
| 506 | { |
| 507 | AssemblerType::relinkJump(jump.dataLocation(), destination.dataLocation()); |
| 508 | } |
| 509 | |
| 510 | static void repatchNearCall(CodeLocationNearCall nearCall, CodeLocationLabel destination) |
| 511 | { |
| 512 | AssemblerType::relinkCall(nearCall.dataLocation(), destination.executableAddress()); |
| 513 | } |
| 514 | |
| 515 | static void repatchInt32(CodeLocationDataLabel32 dataLabel32, int32_t value) |
| 516 | { |
| 517 | AssemblerType::repatchInt32(dataLabel32.dataLocation(), value); |
| 518 | } |
| 519 | |
| 520 | static void repatchPointer(CodeLocationDataLabelPtr dataLabelPtr, void* value) |
| 521 | { |
| 522 | AssemblerType::repatchPointer(dataLabelPtr.dataLocation(), value); |
| 523 | } |
| 524 | |
| 525 | static void repatchLoadPtrToLEA(CodeLocationInstruction instruction) |
| 526 | { |
| 527 | AssemblerType::repatchLoadPtrToLEA(instruction.dataLocation()); |
| 528 | } |
| 529 | }; |
| 530 | |
| 531 | } // namespace JSC |
| 532 | |
| 533 | #endif // ENABLE(ASSEMBLER) |
| 534 | |
| 535 | #endif // AbstractMacroAssembler_h |
| 536 | |