| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2019 The Qt Company Ltd. |
| 4 | ** Copyright (C) 2018 Intel Corporation. |
| 5 | ** Contact: https://www.qt.io/licensing/ |
| 6 | ** |
| 7 | ** This file is part of the QtCore module of the Qt Toolkit. |
| 8 | ** |
| 9 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 10 | ** Commercial License Usage |
| 11 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 12 | ** accordance with the commercial license agreement provided with the |
| 13 | ** Software or, alternatively, in accordance with the terms contained in |
| 14 | ** a written agreement between you and The Qt Company. For licensing terms |
| 15 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 16 | ** information use the contact form at https://www.qt.io/contact-us. |
| 17 | ** |
| 18 | ** GNU Lesser General Public License Usage |
| 19 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 20 | ** General Public License version 3 as published by the Free Software |
| 21 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 22 | ** packaging of this file. Please review the following information to |
| 23 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 24 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 25 | ** |
| 26 | ** GNU General Public License Usage |
| 27 | ** Alternatively, this file may be used under the terms of the GNU |
| 28 | ** General Public License version 2.0 or (at your option) the GNU General |
| 29 | ** Public license version 3 or any later version approved by the KDE Free |
| 30 | ** Qt Foundation. The licenses are as published by the Free Software |
| 31 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 32 | ** included in the packaging of this file. Please review the following |
| 33 | ** information to ensure the GNU General Public License requirements will |
| 34 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 35 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 36 | ** |
| 37 | ** $QT_END_LICENSE$ |
| 38 | ** |
| 39 | ****************************************************************************/ |
| 40 | |
| 41 | #ifndef QNUMERIC_P_H |
| 42 | #define QNUMERIC_P_H |
| 43 | |
| 44 | // |
| 45 | // W A R N I N G |
| 46 | // ------------- |
| 47 | // |
| 48 | // This file is not part of the Qt API. It exists purely as an |
| 49 | // implementation detail. This header file may change from version to |
| 50 | // version without notice, or even be removed. |
| 51 | // |
| 52 | // We mean it. |
| 53 | // |
| 54 | |
| 55 | #include "QtCore/private/qglobal_p.h" |
| 56 | #include <cmath> |
| 57 | #include <limits> |
| 58 | |
| 59 | #if defined(Q_CC_MSVC) |
| 60 | # include <intrin.h> |
| 61 | # include <float.h> |
| 62 | # if defined(Q_PROCESSOR_X86_64) || defined(Q_PROCESSOR_ARM_64) |
| 63 | # define Q_INTRINSIC_MUL_OVERFLOW64 |
| 64 | # define Q_UMULH(v1, v2) __umulh(v1, v2); |
| 65 | # define Q_SMULH(v1, v2) __mulh(v1, v2); |
| 66 | # pragma intrinsic(__umulh) |
| 67 | # pragma intrinsic(__mulh) |
| 68 | # endif |
| 69 | #endif |
| 70 | |
| 71 | # if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64) |
| 72 | #include <arm64_ghs.h> |
| 73 | # define Q_INTRINSIC_MUL_OVERFLOW64 |
| 74 | # define Q_UMULH(v1, v2) __MULUH64(v1, v2); |
| 75 | # define Q_SMULH(v1, v2) __MULSH64(v1, v2); |
| 76 | #endif |
| 77 | |
| 78 | #if !defined(Q_CC_MSVC) && (defined(Q_OS_QNX) || defined(Q_CC_INTEL)) |
| 79 | # include <math.h> |
| 80 | # ifdef isnan |
| 81 | # define QT_MATH_H_DEFINES_MACROS |
| 82 | QT_BEGIN_NAMESPACE |
| 83 | namespace qnumeric_std_wrapper { |
| 84 | // the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros. |
| 85 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); } |
| 86 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); } |
| 87 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); } |
| 88 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); } |
| 89 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); } |
| 90 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); } |
| 91 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); } |
| 92 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); } |
| 93 | } |
| 94 | QT_END_NAMESPACE |
| 95 | // These macros from math.h conflict with the real functions in the std namespace. |
| 96 | # undef signbit |
| 97 | # undef isnan |
| 98 | # undef isinf |
| 99 | # undef isfinite |
| 100 | # undef fpclassify |
| 101 | # endif // defined(isnan) |
| 102 | #endif |
| 103 | |
| 104 | QT_BEGIN_NAMESPACE |
| 105 | |
| 106 | namespace qnumeric_std_wrapper { |
| 107 | #if defined(QT_MATH_H_DEFINES_MACROS) |
| 108 | # undef QT_MATH_H_DEFINES_MACROS |
| 109 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); } |
| 110 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); } |
| 111 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); } |
| 112 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); } |
| 113 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); } |
| 114 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); } |
| 115 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); } |
| 116 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); } |
| 117 | #else |
| 118 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(x: d); } |
| 119 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(x: d); } |
| 120 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(x: d); } |
| 121 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(x: d); } |
| 122 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(x: f); } |
| 123 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(x: f); } |
| 124 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(x: f); } |
| 125 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(x: f); } |
| 126 | #endif |
| 127 | } |
| 128 | |
| 129 | Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept |
| 130 | { |
| 131 | Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_infinity, |
| 132 | "platform has no definition for infinity for type double" ); |
| 133 | return std::numeric_limits<double>::infinity(); |
| 134 | } |
| 135 | |
| 136 | #if QT_CONFIG(signaling_nan) |
| 137 | Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept |
| 138 | { |
| 139 | Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_signaling_NaN, |
| 140 | "platform has no definition for signaling NaN for type double" ); |
| 141 | return std::numeric_limits<double>::signaling_NaN(); |
| 142 | } |
| 143 | #endif |
| 144 | |
| 145 | // Quiet NaN |
| 146 | Q_DECL_CONSTEXPR Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept |
| 147 | { |
| 148 | Q_STATIC_ASSERT_X(std::numeric_limits<double>::has_quiet_NaN, |
| 149 | "platform has no definition for quiet NaN for type double" ); |
| 150 | return std::numeric_limits<double>::quiet_NaN(); |
| 151 | } |
| 152 | |
| 153 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d) |
| 154 | { |
| 155 | return qnumeric_std_wrapper::isinf(d); |
| 156 | } |
| 157 | |
| 158 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d) |
| 159 | { |
| 160 | return qnumeric_std_wrapper::isnan(d); |
| 161 | } |
| 162 | |
| 163 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d) |
| 164 | { |
| 165 | return qnumeric_std_wrapper::isfinite(d); |
| 166 | } |
| 167 | |
| 168 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d) |
| 169 | { |
| 170 | return qnumeric_std_wrapper::fpclassify(d); |
| 171 | } |
| 172 | |
| 173 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f) |
| 174 | { |
| 175 | return qnumeric_std_wrapper::isinf(f); |
| 176 | } |
| 177 | |
| 178 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f) |
| 179 | { |
| 180 | return qnumeric_std_wrapper::isnan(f); |
| 181 | } |
| 182 | |
| 183 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f) |
| 184 | { |
| 185 | return qnumeric_std_wrapper::isfinite(f); |
| 186 | } |
| 187 | |
| 188 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f) |
| 189 | { |
| 190 | return qnumeric_std_wrapper::fpclassify(f); |
| 191 | } |
| 192 | |
| 193 | #ifndef Q_CLANG_QDOC |
| 194 | namespace { |
| 195 | /*! |
| 196 | Returns true if the double \a v can be converted to type \c T, false if |
| 197 | it's out of range. If the conversion is successful, the converted value is |
| 198 | stored in \a value; if it was not successful, \a value will contain the |
| 199 | minimum or maximum of T, depending on the sign of \a d. If \c T is |
| 200 | unsigned, then \a value contains the absolute value of \a v. |
| 201 | |
| 202 | This function works for v containing infinities, but not NaN. It's the |
| 203 | caller's responsibility to exclude that possibility before calling it. |
| 204 | */ |
| 205 | template <typename T> static inline bool convertDoubleTo(double v, T *value) |
| 206 | { |
| 207 | Q_STATIC_ASSERT(std::numeric_limits<T>::is_integer); |
| 208 | |
| 209 | // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++ |
| 210 | // standard says only exact conversions are guaranteed. Converting |
| 211 | // integrals to floating-point with loss of precision has implementation- |
| 212 | // defined behavior whether the next higher or next lower is returned; |
| 213 | // converting FP to integral is UB if it can't be represented. |
| 214 | // |
| 215 | // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be |
| 216 | // correct, but Clang, ICC and MSVC don't realize that it's a constant and |
| 217 | // the math call stays in the compiled code. |
| 218 | |
| 219 | double supremum; |
| 220 | if (std::numeric_limits<T>::is_signed) { |
| 221 | supremum = -1.0 * std::numeric_limits<T>::min(); // -1 * (-2^63) = 2^63, exact (for T = qint64) |
| 222 | *value = std::numeric_limits<T>::min(); |
| 223 | if (v < std::numeric_limits<T>::min()) |
| 224 | return false; |
| 225 | } else { |
| 226 | using ST = typename std::make_signed<T>::type; |
| 227 | supremum = -2.0 * std::numeric_limits<ST>::min(); // -2 * (-2^63) = 2^64, exact (for T = quint64) |
| 228 | v = fabs(x: v); |
| 229 | } |
| 230 | |
| 231 | *value = std::numeric_limits<T>::max(); |
| 232 | if (v >= supremum) |
| 233 | return false; |
| 234 | |
| 235 | // Now we can convert, these two conversions cannot be UB |
| 236 | *value = T(v); |
| 237 | |
| 238 | QT_WARNING_PUSH |
| 239 | QT_WARNING_DISABLE_GCC("-Wfloat-equal" ) |
| 240 | QT_WARNING_DISABLE_CLANG("-Wfloat-equal" ) |
| 241 | |
| 242 | return *value == v; |
| 243 | |
| 244 | QT_WARNING_POP |
| 245 | } |
| 246 | |
| 247 | // Overflow math. |
| 248 | // This provides efficient implementations for int, unsigned, qsizetype and |
| 249 | // size_t. Implementations for 8- and 16-bit types will work but may not be as |
| 250 | // efficient. Implementations for 64-bit may be missing on 32-bit platforms. |
| 251 | |
| 252 | #if ((defined(Q_CC_INTEL) ? (Q_CC_INTEL >= 1800 && !defined(Q_OS_WIN)) : defined(Q_CC_GNU)) \ |
| 253 | && Q_CC_GNU >= 500) || __has_builtin(__builtin_add_overflow) |
| 254 | // GCC 5, ICC 18, and Clang 3.8 have builtins to detect overflows |
| 255 | |
| 256 | template <typename T> inline |
| 257 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
| 258 | add_overflow(T v1, T v2, T *r) |
| 259 | { return __builtin_add_overflow(v1, v2, r); } |
| 260 | |
| 261 | template <typename T> inline |
| 262 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
| 263 | sub_overflow(T v1, T v2, T *r) |
| 264 | { return __builtin_sub_overflow(v1, v2, r); } |
| 265 | |
| 266 | template <typename T> inline |
| 267 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
| 268 | mul_overflow(T v1, T v2, T *r) |
| 269 | { return __builtin_mul_overflow(v1, v2, r); } |
| 270 | |
| 271 | #else |
| 272 | // Generic implementations |
| 273 | |
| 274 | template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type |
| 275 | add_overflow(T v1, T v2, T *r) |
| 276 | { |
| 277 | // unsigned additions are well-defined |
| 278 | *r = v1 + v2; |
| 279 | return v1 > T(v1 + v2); |
| 280 | } |
| 281 | |
| 282 | template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type |
| 283 | add_overflow(T v1, T v2, T *r) |
| 284 | { |
| 285 | // Here's how we calculate the overflow: |
| 286 | // 1) unsigned addition is well-defined, so we can always execute it |
| 287 | // 2) conversion from unsigned back to signed is implementation- |
| 288 | // defined and in the implementations we use, it's a no-op. |
| 289 | // 3) signed integer overflow happens if the sign of the two input operands |
| 290 | // is the same but the sign of the result is different. In other words, |
| 291 | // the sign of the result must be the same as the sign of either |
| 292 | // operand. |
| 293 | |
| 294 | using U = typename std::make_unsigned<T>::type; |
| 295 | *r = T(U(v1) + U(v2)); |
| 296 | |
| 297 | // If int is two's complement, assume all integer types are too. |
| 298 | if (std::is_same<int32_t, int>::value) { |
| 299 | // Two's complement equivalent (generates slightly shorter code): |
| 300 | // x ^ y is negative if x and y have different signs |
| 301 | // x & y is negative if x and y are negative |
| 302 | // (x ^ z) & (y ^ z) is negative if x and z have different signs |
| 303 | // AND y and z have different signs |
| 304 | return ((v1 ^ *r) & (v2 ^ *r)) < 0; |
| 305 | } |
| 306 | |
| 307 | bool s1 = (v1 < 0); |
| 308 | bool s2 = (v2 < 0); |
| 309 | bool sr = (*r < 0); |
| 310 | return s1 != sr && s2 != sr; |
| 311 | // also: return s1 == s2 && s1 != sr; |
| 312 | } |
| 313 | |
| 314 | template <typename T> inline typename std::enable_if<std::is_unsigned<T>::value, bool>::type |
| 315 | sub_overflow(T v1, T v2, T *r) |
| 316 | { |
| 317 | // unsigned subtractions are well-defined |
| 318 | *r = v1 - v2; |
| 319 | return v1 < v2; |
| 320 | } |
| 321 | |
| 322 | template <typename T> inline typename std::enable_if<std::is_signed<T>::value, bool>::type |
| 323 | sub_overflow(T v1, T v2, T *r) |
| 324 | { |
| 325 | // See above for explanation. This is the same with some signs reversed. |
| 326 | // We can't use add_overflow(v1, -v2, r) because it would be UB if |
| 327 | // v2 == std::numeric_limits<T>::min(). |
| 328 | |
| 329 | using U = typename std::make_unsigned<T>::type; |
| 330 | *r = T(U(v1) - U(v2)); |
| 331 | |
| 332 | if (std::is_same<int32_t, int>::value) |
| 333 | return ((v1 ^ *r) & (~v2 ^ *r)) < 0; |
| 334 | |
| 335 | bool s1 = (v1 < 0); |
| 336 | bool s2 = !(v2 < 0); |
| 337 | bool sr = (*r < 0); |
| 338 | return s1 != sr && s2 != sr; |
| 339 | // also: return s1 == s2 && s1 != sr; |
| 340 | } |
| 341 | |
| 342 | template <typename T> inline |
| 343 | typename std::enable_if<std::is_unsigned<T>::value || std::is_signed<T>::value, bool>::type |
| 344 | mul_overflow(T v1, T v2, T *r) |
| 345 | { |
| 346 | // use the next biggest type |
| 347 | // Note: for 64-bit systems where __int128 isn't supported, this will cause an error. |
| 348 | using LargerInt = QIntegerForSize<sizeof(T) * 2>; |
| 349 | using Larger = typename std::conditional<std::is_signed<T>::value, |
| 350 | typename LargerInt::Signed, typename LargerInt::Unsigned>::type; |
| 351 | Larger lr = Larger(v1) * Larger(v2); |
| 352 | *r = T(lr); |
| 353 | return lr > std::numeric_limits<T>::max() || lr < std::numeric_limits<T>::min(); |
| 354 | } |
| 355 | |
| 356 | # if defined(Q_INTRINSIC_MUL_OVERFLOW64) |
| 357 | template <> inline bool mul_overflow(quint64 v1, quint64 v2, quint64 *r) |
| 358 | { |
| 359 | *r = v1 * v2; |
| 360 | return Q_UMULH(v1, v2); |
| 361 | } |
| 362 | template <> inline bool mul_overflow(qint64 v1, qint64 v2, qint64 *r) |
| 363 | { |
| 364 | // This is slightly more complex than the unsigned case above: the sign bit |
| 365 | // of 'low' must be replicated as the entire 'high', so the only valid |
| 366 | // values for 'high' are 0 and -1. Use unsigned multiply since it's the same |
| 367 | // as signed for the low bits and use a signed right shift to verify that |
| 368 | // 'high' is nothing but sign bits that match the sign of 'low'. |
| 369 | |
| 370 | qint64 high = Q_SMULH(v1, v2); |
| 371 | *r = qint64(quint64(v1) * quint64(v2)); |
| 372 | return (*r >> 63) != high; |
| 373 | } |
| 374 | |
| 375 | # if defined(Q_OS_INTEGRITY) && defined(Q_PROCESSOR_ARM_64) |
| 376 | template <> inline bool mul_overflow(uint64_t v1, uint64_t v2, uint64_t *r) |
| 377 | { |
| 378 | return mul_overflow<quint64>(v1,v2,reinterpret_cast<quint64*>(r)); |
| 379 | } |
| 380 | |
| 381 | template <> inline bool mul_overflow(int64_t v1, int64_t v2, int64_t *r) |
| 382 | { |
| 383 | return mul_overflow<qint64>(v1,v2,reinterpret_cast<qint64*>(r)); |
| 384 | } |
| 385 | # endif // OS_INTEGRITY ARM64 |
| 386 | # endif // Q_INTRINSIC_MUL_OVERFLOW64 |
| 387 | |
| 388 | # if defined(Q_CC_MSVC) && defined(Q_PROCESSOR_X86) |
| 389 | // We can use intrinsics for the unsigned operations with MSVC |
| 390 | template <> inline bool add_overflow(unsigned v1, unsigned v2, unsigned *r) |
| 391 | { return _addcarry_u32(0, v1, v2, r); } |
| 392 | |
| 393 | // 32-bit mul_overflow is fine with the generic code above |
| 394 | |
| 395 | template <> inline bool add_overflow(quint64 v1, quint64 v2, quint64 *r) |
| 396 | { |
| 397 | # if defined(Q_PROCESSOR_X86_64) |
| 398 | return _addcarry_u64(0, v1, v2, reinterpret_cast<unsigned __int64 *>(r)); |
| 399 | # else |
| 400 | uint low, high; |
| 401 | uchar carry = _addcarry_u32(0, unsigned(v1), unsigned(v2), &low); |
| 402 | carry = _addcarry_u32(carry, v1 >> 32, v2 >> 32, &high); |
| 403 | *r = (quint64(high) << 32) | low; |
| 404 | return carry; |
| 405 | # endif // !x86-64 |
| 406 | } |
| 407 | # endif // MSVC X86 |
| 408 | #endif // !GCC |
| 409 | } |
| 410 | #endif // Q_CLANG_QDOC |
| 411 | |
| 412 | QT_END_NAMESPACE |
| 413 | |
| 414 | #endif // QNUMERIC_P_H |
| 415 | |