| 1 | /* |
| 2 | * Copyright (C) 2008, 2009 Paul Pedriana <[email protected]>. All rights reserved. |
| 3 | * |
| 4 | * Redistribution and use in source and binary forms, with or without |
| 5 | * modification, are permitted provided that the following conditions |
| 6 | * are met: |
| 7 | * |
| 8 | * 1. Redistributions of source code must retain the above copyright |
| 9 | * notice, this list of conditions and the following disclaimer. |
| 10 | * 2. Redistributions in binary form must reproduce the above copyright |
| 11 | * notice, this list of conditions and the following disclaimer in the |
| 12 | * documentation and/or other materials provided with the distribution. |
| 13 | * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of |
| 14 | * its contributors may be used to endorse or promote products derived |
| 15 | * from this software without specific prior written permission. |
| 16 | * |
| 17 | * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY |
| 18 | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| 19 | * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| 20 | * DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY |
| 21 | * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| 22 | * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| 23 | * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| 24 | * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 27 | */ |
| 28 | |
| 29 | #ifndef FastAllocBase_h |
| 30 | #define FastAllocBase_h |
| 31 | |
| 32 | // Provides customizable overrides of fastMalloc/fastFree and operator new/delete |
| 33 | // |
| 34 | // Provided functionality: |
| 35 | // namespace WTF { |
| 36 | // class FastAllocBase; |
| 37 | // |
| 38 | // T* fastNew<T>(); |
| 39 | // T* fastNew<T>(arg); |
| 40 | // T* fastNew<T>(arg, arg); |
| 41 | // T* fastNewArray<T>(count); |
| 42 | // void fastDelete(T* p); |
| 43 | // void fastDeleteArray(T* p); |
| 44 | // void fastNonNullDelete(T* p); |
| 45 | // void fastNonNullDeleteArray(T* p); |
| 46 | // } |
| 47 | // |
| 48 | // FastDelete assumes that the underlying |
| 49 | // |
| 50 | // Example usage: |
| 51 | // class Widget : public FastAllocBase { ... }; |
| 52 | // |
| 53 | // char* charPtr = fastNew<char>(); |
| 54 | // fastDelete(charPtr); |
| 55 | // |
| 56 | // char* charArrayPtr = fastNewArray<char>(37); |
| 57 | // fastDeleteArray(charArrayPtr); |
| 58 | // |
| 59 | // void** voidPtrPtr = fastNew<void*>(); |
| 60 | // fastDelete(voidPtrPtr); |
| 61 | // |
| 62 | // void** voidPtrArrayPtr = fastNewArray<void*>(37); |
| 63 | // fastDeleteArray(voidPtrArrayPtr); |
| 64 | // |
| 65 | // POD* podPtr = fastNew<POD>(); |
| 66 | // fastDelete(podPtr); |
| 67 | // |
| 68 | // POD* podArrayPtr = fastNewArray<POD>(37); |
| 69 | // fastDeleteArray(podArrayPtr); |
| 70 | // |
| 71 | // Object* objectPtr = fastNew<Object>(); |
| 72 | // fastDelete(objectPtr); |
| 73 | // |
| 74 | // Object* objectArrayPtr = fastNewArray<Object>(37); |
| 75 | // fastDeleteArray(objectArrayPtr); |
| 76 | // |
| 77 | |
| 78 | #include <new> |
| 79 | #include <stdint.h> |
| 80 | #include <stdlib.h> |
| 81 | #include <string.h> |
| 82 | #include "Assertions.h" |
| 83 | #include "FastMalloc.h" |
| 84 | #include "TypeTraits.h" |
| 85 | |
| 86 | namespace WTF { |
| 87 | |
| 88 | class FastAllocBase { |
| 89 | public: |
| 90 | // Placement operator new. |
| 91 | void* operator new(size_t, void* p) { return p; } |
| 92 | void* operator new[](size_t, void* p) { return p; } |
| 93 | |
| 94 | void* operator new(size_t size) |
| 95 | { |
| 96 | void* p = fastMalloc(size); |
| 97 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeClassNew); |
| 98 | return p; |
| 99 | } |
| 100 | |
| 101 | void operator delete(void* p) |
| 102 | { |
| 103 | fastMallocMatchValidateFree(p, Internal::AllocTypeClassNew); |
| 104 | fastFree(p); |
| 105 | } |
| 106 | |
| 107 | void* operator new[](size_t size) |
| 108 | { |
| 109 | void* p = fastMalloc(size); |
| 110 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeClassNewArray); |
| 111 | return p; |
| 112 | } |
| 113 | |
| 114 | void operator delete[](void* p) |
| 115 | { |
| 116 | fastMallocMatchValidateFree(p, Internal::AllocTypeClassNewArray); |
| 117 | fastFree(p); |
| 118 | } |
| 119 | }; |
| 120 | |
| 121 | // fastNew / fastDelete |
| 122 | |
| 123 | template <typename T> |
| 124 | inline T* fastNew() |
| 125 | { |
| 126 | void* p = fastMalloc(sizeof(T)); |
| 127 | |
| 128 | if (!p) |
| 129 | return 0; |
| 130 | |
| 131 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNew); |
| 132 | return ::new(p) T; |
| 133 | } |
| 134 | |
| 135 | template <typename T, typename Arg1> |
| 136 | inline T* fastNew(Arg1 arg1) |
| 137 | { |
| 138 | void* p = fastMalloc(sizeof(T)); |
| 139 | |
| 140 | if (!p) |
| 141 | return 0; |
| 142 | |
| 143 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNew); |
| 144 | return ::new(p) T(arg1); |
| 145 | } |
| 146 | |
| 147 | template <typename T, typename Arg1, typename Arg2> |
| 148 | inline T* fastNew(Arg1 arg1, Arg2 arg2) |
| 149 | { |
| 150 | void* p = fastMalloc(sizeof(T)); |
| 151 | |
| 152 | if (!p) |
| 153 | return 0; |
| 154 | |
| 155 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNew); |
| 156 | return ::new(p) T(arg1, arg2); |
| 157 | } |
| 158 | |
| 159 | template <typename T, typename Arg1, typename Arg2, typename Arg3> |
| 160 | inline T* fastNew(Arg1 arg1, Arg2 arg2, Arg3 arg3) |
| 161 | { |
| 162 | void* p = fastMalloc(sizeof(T)); |
| 163 | |
| 164 | if (!p) |
| 165 | return 0; |
| 166 | |
| 167 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNew); |
| 168 | return ::new(p) T(arg1, arg2, arg3); |
| 169 | } |
| 170 | |
| 171 | template <typename T, typename Arg1, typename Arg2, typename Arg3, typename Arg4> |
| 172 | inline T* fastNew(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4) |
| 173 | { |
| 174 | void* p = fastMalloc(sizeof(T)); |
| 175 | |
| 176 | if (!p) |
| 177 | return 0; |
| 178 | |
| 179 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNew); |
| 180 | return ::new(p) T(arg1, arg2, arg3, arg4); |
| 181 | } |
| 182 | |
| 183 | template <typename T, typename Arg1, typename Arg2, typename Arg3, typename Arg4, typename Arg5> |
| 184 | inline T* fastNew(Arg1 arg1, Arg2 arg2, Arg3 arg3, Arg4 arg4, Arg5 arg5) |
| 185 | { |
| 186 | void* p = fastMalloc(sizeof(T)); |
| 187 | |
| 188 | if (!p) |
| 189 | return 0; |
| 190 | |
| 191 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNew); |
| 192 | return ::new(p) T(arg1, arg2, arg3, arg4, arg5); |
| 193 | } |
| 194 | |
| 195 | namespace Internal { |
| 196 | |
| 197 | // We define a union of pointer to an integer and pointer to T. |
| 198 | // When non-POD arrays are allocated we add a few leading bytes to tell what |
| 199 | // the size of the array is. We return to the user the pointer to T. |
| 200 | // The way to think of it is as if we allocate a struct like so: |
| 201 | // struct Array { |
| 202 | // AllocAlignmentInteger m_size; |
| 203 | // T m_T[array count]; |
| 204 | // }; |
| 205 | |
| 206 | template <typename T> |
| 207 | union ArraySize { |
| 208 | AllocAlignmentInteger* size; |
| 209 | T* t; |
| 210 | }; |
| 211 | |
| 212 | // This is a support template for fastNewArray. |
| 213 | // This handles the case wherein T has a trivial ctor and a trivial dtor. |
| 214 | template <typename T, bool trivialCtor, bool trivialDtor> |
| 215 | struct NewArrayImpl { |
| 216 | static T* fastNewArray(size_t count) |
| 217 | { |
| 218 | T* p = static_cast<T*>(fastMalloc(sizeof(T) * count)); |
| 219 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNewArray); |
| 220 | return p; |
| 221 | } |
| 222 | }; |
| 223 | |
| 224 | // This is a support template for fastNewArray. |
| 225 | // This handles the case wherein T has a non-trivial ctor and a trivial dtor. |
| 226 | template <typename T> |
| 227 | struct NewArrayImpl<T, false, true> { |
| 228 | static T* fastNewArray(size_t count) |
| 229 | { |
| 230 | T* p = static_cast<T*>(fastMalloc(sizeof(T) * count)); |
| 231 | |
| 232 | if (!p) |
| 233 | return 0; |
| 234 | |
| 235 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNewArray); |
| 236 | |
| 237 | for (T* pObject = p, *pObjectEnd = pObject + count; pObject != pObjectEnd; ++pObject) |
| 238 | ::new(pObject) T; |
| 239 | |
| 240 | return p; |
| 241 | } |
| 242 | }; |
| 243 | |
| 244 | // This is a support template for fastNewArray. |
| 245 | // This handles the case wherein T has a trivial ctor and a non-trivial dtor. |
| 246 | template <typename T> |
| 247 | struct NewArrayImpl<T, true, false> { |
| 248 | static T* fastNewArray(size_t count) |
| 249 | { |
| 250 | void* p = fastMalloc(sizeof(AllocAlignmentInteger) + (sizeof(T) * count)); |
| 251 | ArraySize<T> a = { static_cast<AllocAlignmentInteger*>(p) }; |
| 252 | |
| 253 | if (!p) |
| 254 | return 0; |
| 255 | |
| 256 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNewArray); |
| 257 | *a.size++ = count; |
| 258 | // No need to construct the objects in this case. |
| 259 | |
| 260 | return a.t; |
| 261 | } |
| 262 | }; |
| 263 | |
| 264 | // This is a support template for fastNewArray. |
| 265 | // This handles the case wherein T has a non-trivial ctor and a non-trivial dtor. |
| 266 | template <typename T> |
| 267 | struct NewArrayImpl<T, false, false> { |
| 268 | static T* fastNewArray(size_t count) |
| 269 | { |
| 270 | void* p = fastMalloc(sizeof(AllocAlignmentInteger) + (sizeof(T) * count)); |
| 271 | ArraySize<T> a = { static_cast<AllocAlignmentInteger*>(p) }; |
| 272 | |
| 273 | if (!p) |
| 274 | return 0; |
| 275 | |
| 276 | fastMallocMatchValidateMalloc(p, Internal::AllocTypeFastNewArray); |
| 277 | *a.size++ = count; |
| 278 | |
| 279 | for (T* pT = a.t, *pTEnd = pT + count; pT != pTEnd; ++pT) |
| 280 | ::new(pT) T; |
| 281 | |
| 282 | return a.t; |
| 283 | } |
| 284 | }; |
| 285 | } // namespace Internal |
| 286 | |
| 287 | template <typename T> |
| 288 | inline T* fastNewArray(size_t count) |
| 289 | { |
| 290 | return Internal::NewArrayImpl<T, WTF::HasTrivialConstructor<T>::value, WTF::HasTrivialDestructor<T>::value>::fastNewArray(count); |
| 291 | } |
| 292 | |
| 293 | template <typename T> |
| 294 | inline void fastDelete(T* p) |
| 295 | { |
| 296 | if (!p) |
| 297 | return; |
| 298 | |
| 299 | fastMallocMatchValidateFree(p, Internal::AllocTypeFastNew); |
| 300 | p->~T(); |
| 301 | fastFree(p); |
| 302 | } |
| 303 | |
| 304 | template <typename T> |
| 305 | inline void fastDeleteSkippingDestructor(T* p) |
| 306 | { |
| 307 | if (!p) |
| 308 | return; |
| 309 | |
| 310 | fastMallocMatchValidateFree(p, Internal::AllocTypeFastNew); |
| 311 | fastFree(p); |
| 312 | } |
| 313 | |
| 314 | namespace Internal { |
| 315 | // This is a support template for fastDeleteArray. |
| 316 | // This handles the case wherein T has a trivial dtor. |
| 317 | template <typename T, bool trivialDtor> |
| 318 | struct DeleteArrayImpl { |
| 319 | static void fastDeleteArray(void* p) |
| 320 | { |
| 321 | // No need to destruct the objects in this case. |
| 322 | // We expect that fastFree checks for null. |
| 323 | fastMallocMatchValidateFree(p, Internal::AllocTypeFastNewArray); |
| 324 | fastFree(p); |
| 325 | } |
| 326 | }; |
| 327 | |
| 328 | // This is a support template for fastDeleteArray. |
| 329 | // This handles the case wherein T has a non-trivial dtor. |
| 330 | template <typename T> |
| 331 | struct DeleteArrayImpl<T, false> { |
| 332 | static void fastDeleteArray(T* p) |
| 333 | { |
| 334 | if (!p) |
| 335 | return; |
| 336 | |
| 337 | ArraySize<T> a; |
| 338 | a.t = p; |
| 339 | a.size--; // Decrement size pointer |
| 340 | |
| 341 | T* pEnd = p + *a.size; |
| 342 | while (pEnd-- != p) |
| 343 | pEnd->~T(); |
| 344 | |
| 345 | fastMallocMatchValidateFree(a.size, Internal::AllocTypeFastNewArray); |
| 346 | fastFree(a.size); |
| 347 | } |
| 348 | }; |
| 349 | |
| 350 | } // namespace Internal |
| 351 | |
| 352 | template <typename T> |
| 353 | void fastDeleteArray(T* p) |
| 354 | { |
| 355 | Internal::DeleteArrayImpl<T, WTF::HasTrivialDestructor<T>::value>::fastDeleteArray(p); |
| 356 | } |
| 357 | |
| 358 | |
| 359 | template <typename T> |
| 360 | inline void fastNonNullDelete(T* p) |
| 361 | { |
| 362 | fastMallocMatchValidateFree(p, Internal::AllocTypeFastNew); |
| 363 | p->~T(); |
| 364 | fastFree(p); |
| 365 | } |
| 366 | |
| 367 | namespace Internal { |
| 368 | // This is a support template for fastDeleteArray. |
| 369 | // This handles the case wherein T has a trivial dtor. |
| 370 | template <typename T, bool trivialDtor> |
| 371 | struct NonNullDeleteArrayImpl { |
| 372 | static void fastNonNullDeleteArray(void* p) |
| 373 | { |
| 374 | fastMallocMatchValidateFree(p, Internal::AllocTypeFastNewArray); |
| 375 | // No need to destruct the objects in this case. |
| 376 | fastFree(p); |
| 377 | } |
| 378 | }; |
| 379 | |
| 380 | // This is a support template for fastDeleteArray. |
| 381 | // This handles the case wherein T has a non-trivial dtor. |
| 382 | template <typename T> |
| 383 | struct NonNullDeleteArrayImpl<T, false> { |
| 384 | static void fastNonNullDeleteArray(T* p) |
| 385 | { |
| 386 | ArraySize<T> a; |
| 387 | a.t = p; |
| 388 | a.size--; |
| 389 | |
| 390 | T* pEnd = p + *a.size; |
| 391 | while (pEnd-- != p) |
| 392 | pEnd->~T(); |
| 393 | |
| 394 | fastMallocMatchValidateFree(a.size, Internal::AllocTypeFastNewArray); |
| 395 | fastFree(a.size); |
| 396 | } |
| 397 | }; |
| 398 | |
| 399 | } // namespace Internal |
| 400 | |
| 401 | template <typename T> |
| 402 | void fastNonNullDeleteArray(T* p) |
| 403 | { |
| 404 | Internal::NonNullDeleteArrayImpl<T, WTF::HasTrivialDestructor<T>::value>::fastNonNullDeleteArray(p); |
| 405 | } |
| 406 | |
| 407 | |
| 408 | } // namespace WTF |
| 409 | |
| 410 | using WTF::FastAllocBase; |
| 411 | using WTF::fastDeleteSkippingDestructor; |
| 412 | |
| 413 | #endif // FastAllocBase_h |
| 414 | |