| 1 | // random number generation (out of line) -*- C++ -*- |
| 2 | |
| 3 | // Copyright (C) 2009-2021 Free Software Foundation, Inc. |
| 4 | // |
| 5 | // This file is part of the GNU ISO C++ Library. This library is free |
| 6 | // software; you can redistribute it and/or modify it under the |
| 7 | // terms of the GNU General Public License as published by the |
| 8 | // Free Software Foundation; either version 3, or (at your option) |
| 9 | // any later version. |
| 10 | |
| 11 | // This library is distributed in the hope that it will be useful, |
| 12 | // but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | // GNU General Public License for more details. |
| 15 | |
| 16 | // Under Section 7 of GPL version 3, you are granted additional |
| 17 | // permissions described in the GCC Runtime Library Exception, version |
| 18 | // 3.1, as published by the Free Software Foundation. |
| 19 | |
| 20 | // You should have received a copy of the GNU General Public License and |
| 21 | // a copy of the GCC Runtime Library Exception along with this program; |
| 22 | // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see |
| 23 | // <http://www.gnu.org/licenses/>. |
| 24 | |
| 25 | /** @file bits/random.tcc |
| 26 | * This is an internal header file, included by other library headers. |
| 27 | * Do not attempt to use it directly. @headername{random} |
| 28 | */ |
| 29 | |
| 30 | #ifndef _RANDOM_TCC |
| 31 | #define _RANDOM_TCC 1 |
| 32 | |
| 33 | #include <numeric> // std::accumulate and std::partial_sum |
| 34 | |
| 35 | namespace std _GLIBCXX_VISIBILITY(default) |
| 36 | { |
| 37 | _GLIBCXX_BEGIN_NAMESPACE_VERSION |
| 38 | |
| 39 | /// @cond undocumented |
| 40 | // (Further) implementation-space details. |
| 41 | namespace __detail |
| 42 | { |
| 43 | // General case for x = (ax + c) mod m -- use Schrage's algorithm |
| 44 | // to avoid integer overflow. |
| 45 | // |
| 46 | // Preconditions: a > 0, m > 0. |
| 47 | // |
| 48 | // Note: only works correctly for __m % __a < __m / __a. |
| 49 | template<typename _Tp, _Tp __m, _Tp __a, _Tp __c> |
| 50 | _Tp |
| 51 | _Mod<_Tp, __m, __a, __c, false, true>:: |
| 52 | __calc(_Tp __x) |
| 53 | { |
| 54 | if (__a == 1) |
| 55 | __x %= __m; |
| 56 | else |
| 57 | { |
| 58 | static const _Tp __q = __m / __a; |
| 59 | static const _Tp __r = __m % __a; |
| 60 | |
| 61 | _Tp __t1 = __a * (__x % __q); |
| 62 | _Tp __t2 = __r * (__x / __q); |
| 63 | if (__t1 >= __t2) |
| 64 | __x = __t1 - __t2; |
| 65 | else |
| 66 | __x = __m - __t2 + __t1; |
| 67 | } |
| 68 | |
| 69 | if (__c != 0) |
| 70 | { |
| 71 | const _Tp __d = __m - __x; |
| 72 | if (__d > __c) |
| 73 | __x += __c; |
| 74 | else |
| 75 | __x = __c - __d; |
| 76 | } |
| 77 | return __x; |
| 78 | } |
| 79 | |
| 80 | template<typename _InputIterator, typename _OutputIterator, |
| 81 | typename _Tp> |
| 82 | _OutputIterator |
| 83 | __normalize(_InputIterator __first, _InputIterator __last, |
| 84 | _OutputIterator __result, const _Tp& __factor) |
| 85 | { |
| 86 | for (; __first != __last; ++__first, ++__result) |
| 87 | *__result = *__first / __factor; |
| 88 | return __result; |
| 89 | } |
| 90 | |
| 91 | } // namespace __detail |
| 92 | /// @endcond |
| 93 | |
| 94 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 95 | constexpr _UIntType |
| 96 | linear_congruential_engine<_UIntType, __a, __c, __m>::multiplier; |
| 97 | |
| 98 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 99 | constexpr _UIntType |
| 100 | linear_congruential_engine<_UIntType, __a, __c, __m>::increment; |
| 101 | |
| 102 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 103 | constexpr _UIntType |
| 104 | linear_congruential_engine<_UIntType, __a, __c, __m>::modulus; |
| 105 | |
| 106 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 107 | constexpr _UIntType |
| 108 | linear_congruential_engine<_UIntType, __a, __c, __m>::default_seed; |
| 109 | |
| 110 | /** |
| 111 | * Seeds the LCR with integral value @p __s, adjusted so that the |
| 112 | * ring identity is never a member of the convergence set. |
| 113 | */ |
| 114 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 115 | void |
| 116 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
| 117 | seed(result_type __s) |
| 118 | { |
| 119 | if ((__detail::__mod<_UIntType, __m>(__c) == 0) |
| 120 | && (__detail::__mod<_UIntType, __m>(__s) == 0)) |
| 121 | _M_x = 1; |
| 122 | else |
| 123 | _M_x = __detail::__mod<_UIntType, __m>(__s); |
| 124 | } |
| 125 | |
| 126 | /** |
| 127 | * Seeds the LCR engine with a value generated by @p __q. |
| 128 | */ |
| 129 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m> |
| 130 | template<typename _Sseq> |
| 131 | auto |
| 132 | linear_congruential_engine<_UIntType, __a, __c, __m>:: |
| 133 | seed(_Sseq& __q) |
| 134 | -> _If_seed_seq<_Sseq> |
| 135 | { |
| 136 | const _UIntType __k0 = __m == 0 ? std::numeric_limits<_UIntType>::digits |
| 137 | : std::__lg(__m); |
| 138 | const _UIntType __k = (__k0 + 31) / 32; |
| 139 | uint_least32_t __arr[__k + 3]; |
| 140 | __q.generate(__arr + 0, __arr + __k + 3); |
| 141 | _UIntType __factor = 1u; |
| 142 | _UIntType __sum = 0u; |
| 143 | for (size_t __j = 0; __j < __k; ++__j) |
| 144 | { |
| 145 | __sum += __arr[__j + 3] * __factor; |
| 146 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 147 | } |
| 148 | seed(__sum); |
| 149 | } |
| 150 | |
| 151 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| 152 | typename _CharT, typename _Traits> |
| 153 | std::basic_ostream<_CharT, _Traits>& |
| 154 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 155 | const linear_congruential_engine<_UIntType, |
| 156 | __a, __c, __m>& __lcr) |
| 157 | { |
| 158 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 159 | |
| 160 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 161 | const _CharT __fill = __os.fill(); |
| 162 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 163 | __os.fill(__os.widen(' ')); |
| 164 | |
| 165 | __os << __lcr._M_x; |
| 166 | |
| 167 | __os.flags(__flags); |
| 168 | __os.fill(__fill); |
| 169 | return __os; |
| 170 | } |
| 171 | |
| 172 | template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m, |
| 173 | typename _CharT, typename _Traits> |
| 174 | std::basic_istream<_CharT, _Traits>& |
| 175 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 176 | linear_congruential_engine<_UIntType, __a, __c, __m>& __lcr) |
| 177 | { |
| 178 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 179 | |
| 180 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 181 | __is.flags(__ios_base::dec); |
| 182 | |
| 183 | __is >> __lcr._M_x; |
| 184 | |
| 185 | __is.flags(__flags); |
| 186 | return __is; |
| 187 | } |
| 188 | |
| 189 | |
| 190 | template<typename _UIntType, |
| 191 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 192 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 193 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 194 | _UIntType __f> |
| 195 | constexpr size_t |
| 196 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 197 | __s, __b, __t, __c, __l, __f>::word_size; |
| 198 | |
| 199 | template<typename _UIntType, |
| 200 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 201 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 202 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 203 | _UIntType __f> |
| 204 | constexpr size_t |
| 205 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 206 | __s, __b, __t, __c, __l, __f>::state_size; |
| 207 | |
| 208 | template<typename _UIntType, |
| 209 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 210 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 211 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 212 | _UIntType __f> |
| 213 | constexpr size_t |
| 214 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 215 | __s, __b, __t, __c, __l, __f>::shift_size; |
| 216 | |
| 217 | template<typename _UIntType, |
| 218 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 219 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 220 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 221 | _UIntType __f> |
| 222 | constexpr size_t |
| 223 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 224 | __s, __b, __t, __c, __l, __f>::mask_bits; |
| 225 | |
| 226 | template<typename _UIntType, |
| 227 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 228 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 229 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 230 | _UIntType __f> |
| 231 | constexpr _UIntType |
| 232 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 233 | __s, __b, __t, __c, __l, __f>::xor_mask; |
| 234 | |
| 235 | template<typename _UIntType, |
| 236 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 237 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 238 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 239 | _UIntType __f> |
| 240 | constexpr size_t |
| 241 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 242 | __s, __b, __t, __c, __l, __f>::tempering_u; |
| 243 | |
| 244 | template<typename _UIntType, |
| 245 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 246 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 247 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 248 | _UIntType __f> |
| 249 | constexpr _UIntType |
| 250 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 251 | __s, __b, __t, __c, __l, __f>::tempering_d; |
| 252 | |
| 253 | template<typename _UIntType, |
| 254 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 255 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 256 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 257 | _UIntType __f> |
| 258 | constexpr size_t |
| 259 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 260 | __s, __b, __t, __c, __l, __f>::tempering_s; |
| 261 | |
| 262 | template<typename _UIntType, |
| 263 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 264 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 265 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 266 | _UIntType __f> |
| 267 | constexpr _UIntType |
| 268 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 269 | __s, __b, __t, __c, __l, __f>::tempering_b; |
| 270 | |
| 271 | template<typename _UIntType, |
| 272 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 273 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 274 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 275 | _UIntType __f> |
| 276 | constexpr size_t |
| 277 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 278 | __s, __b, __t, __c, __l, __f>::tempering_t; |
| 279 | |
| 280 | template<typename _UIntType, |
| 281 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 282 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 283 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 284 | _UIntType __f> |
| 285 | constexpr _UIntType |
| 286 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 287 | __s, __b, __t, __c, __l, __f>::tempering_c; |
| 288 | |
| 289 | template<typename _UIntType, |
| 290 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 291 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 292 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 293 | _UIntType __f> |
| 294 | constexpr size_t |
| 295 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 296 | __s, __b, __t, __c, __l, __f>::tempering_l; |
| 297 | |
| 298 | template<typename _UIntType, |
| 299 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 300 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 301 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 302 | _UIntType __f> |
| 303 | constexpr _UIntType |
| 304 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 305 | __s, __b, __t, __c, __l, __f>:: |
| 306 | initialization_multiplier; |
| 307 | |
| 308 | template<typename _UIntType, |
| 309 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 310 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 311 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 312 | _UIntType __f> |
| 313 | constexpr _UIntType |
| 314 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 315 | __s, __b, __t, __c, __l, __f>::default_seed; |
| 316 | |
| 317 | template<typename _UIntType, |
| 318 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 319 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 320 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 321 | _UIntType __f> |
| 322 | void |
| 323 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 324 | __s, __b, __t, __c, __l, __f>:: |
| 325 | seed(result_type __sd) |
| 326 | { |
| 327 | _M_x[0] = __detail::__mod<_UIntType, |
| 328 | __detail::_Shift<_UIntType, __w>::__value>(__sd); |
| 329 | |
| 330 | for (size_t __i = 1; __i < state_size; ++__i) |
| 331 | { |
| 332 | _UIntType __x = _M_x[__i - 1]; |
| 333 | __x ^= __x >> (__w - 2); |
| 334 | __x *= __f; |
| 335 | __x += __detail::__mod<_UIntType, __n>(__i); |
| 336 | _M_x[__i] = __detail::__mod<_UIntType, |
| 337 | __detail::_Shift<_UIntType, __w>::__value>(__x); |
| 338 | } |
| 339 | _M_p = state_size; |
| 340 | } |
| 341 | |
| 342 | template<typename _UIntType, |
| 343 | size_t __w, size_t __n, size_t __m, size_t __r, |
| 344 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 345 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 346 | _UIntType __f> |
| 347 | template<typename _Sseq> |
| 348 | auto |
| 349 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 350 | __s, __b, __t, __c, __l, __f>:: |
| 351 | seed(_Sseq& __q) |
| 352 | -> _If_seed_seq<_Sseq> |
| 353 | { |
| 354 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
| 355 | const size_t __k = (__w + 31) / 32; |
| 356 | uint_least32_t __arr[__n * __k]; |
| 357 | __q.generate(__arr + 0, __arr + __n * __k); |
| 358 | |
| 359 | bool __zero = true; |
| 360 | for (size_t __i = 0; __i < state_size; ++__i) |
| 361 | { |
| 362 | _UIntType __factor = 1u; |
| 363 | _UIntType __sum = 0u; |
| 364 | for (size_t __j = 0; __j < __k; ++__j) |
| 365 | { |
| 366 | __sum += __arr[__k * __i + __j] * __factor; |
| 367 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 368 | } |
| 369 | _M_x[__i] = __detail::__mod<_UIntType, |
| 370 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
| 371 | |
| 372 | if (__zero) |
| 373 | { |
| 374 | if (__i == 0) |
| 375 | { |
| 376 | if ((_M_x[0] & __upper_mask) != 0u) |
| 377 | __zero = false; |
| 378 | } |
| 379 | else if (_M_x[__i] != 0u) |
| 380 | __zero = false; |
| 381 | } |
| 382 | } |
| 383 | if (__zero) |
| 384 | _M_x[0] = __detail::_Shift<_UIntType, __w - 1>::__value; |
| 385 | _M_p = state_size; |
| 386 | } |
| 387 | |
| 388 | template<typename _UIntType, size_t __w, |
| 389 | size_t __n, size_t __m, size_t __r, |
| 390 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 391 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 392 | _UIntType __f> |
| 393 | void |
| 394 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 395 | __s, __b, __t, __c, __l, __f>:: |
| 396 | _M_gen_rand(void) |
| 397 | { |
| 398 | const _UIntType __upper_mask = (~_UIntType()) << __r; |
| 399 | const _UIntType __lower_mask = ~__upper_mask; |
| 400 | |
| 401 | for (size_t __k = 0; __k < (__n - __m); ++__k) |
| 402 | { |
| 403 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
| 404 | | (_M_x[__k + 1] & __lower_mask)); |
| 405 | _M_x[__k] = (_M_x[__k + __m] ^ (__y >> 1) |
| 406 | ^ ((__y & 0x01) ? __a : 0)); |
| 407 | } |
| 408 | |
| 409 | for (size_t __k = (__n - __m); __k < (__n - 1); ++__k) |
| 410 | { |
| 411 | _UIntType __y = ((_M_x[__k] & __upper_mask) |
| 412 | | (_M_x[__k + 1] & __lower_mask)); |
| 413 | _M_x[__k] = (_M_x[__k + (__m - __n)] ^ (__y >> 1) |
| 414 | ^ ((__y & 0x01) ? __a : 0)); |
| 415 | } |
| 416 | |
| 417 | _UIntType __y = ((_M_x[__n - 1] & __upper_mask) |
| 418 | | (_M_x[0] & __lower_mask)); |
| 419 | _M_x[__n - 1] = (_M_x[__m - 1] ^ (__y >> 1) |
| 420 | ^ ((__y & 0x01) ? __a : 0)); |
| 421 | _M_p = 0; |
| 422 | } |
| 423 | |
| 424 | template<typename _UIntType, size_t __w, |
| 425 | size_t __n, size_t __m, size_t __r, |
| 426 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 427 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 428 | _UIntType __f> |
| 429 | void |
| 430 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 431 | __s, __b, __t, __c, __l, __f>:: |
| 432 | discard(unsigned long long __z) |
| 433 | { |
| 434 | while (__z > state_size - _M_p) |
| 435 | { |
| 436 | __z -= state_size - _M_p; |
| 437 | _M_gen_rand(); |
| 438 | } |
| 439 | _M_p += __z; |
| 440 | } |
| 441 | |
| 442 | template<typename _UIntType, size_t __w, |
| 443 | size_t __n, size_t __m, size_t __r, |
| 444 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 445 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 446 | _UIntType __f> |
| 447 | typename |
| 448 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 449 | __s, __b, __t, __c, __l, __f>::result_type |
| 450 | mersenne_twister_engine<_UIntType, __w, __n, __m, __r, __a, __u, __d, |
| 451 | __s, __b, __t, __c, __l, __f>:: |
| 452 | operator()() |
| 453 | { |
| 454 | // Reload the vector - cost is O(n) amortized over n calls. |
| 455 | if (_M_p >= state_size) |
| 456 | _M_gen_rand(); |
| 457 | |
| 458 | // Calculate o(x(i)). |
| 459 | result_type __z = _M_x[_M_p++]; |
| 460 | __z ^= (__z >> __u) & __d; |
| 461 | __z ^= (__z << __s) & __b; |
| 462 | __z ^= (__z << __t) & __c; |
| 463 | __z ^= (__z >> __l); |
| 464 | |
| 465 | return __z; |
| 466 | } |
| 467 | |
| 468 | template<typename _UIntType, size_t __w, |
| 469 | size_t __n, size_t __m, size_t __r, |
| 470 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 471 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 472 | _UIntType __f, typename _CharT, typename _Traits> |
| 473 | std::basic_ostream<_CharT, _Traits>& |
| 474 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 475 | const mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 476 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
| 477 | { |
| 478 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 479 | |
| 480 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 481 | const _CharT __fill = __os.fill(); |
| 482 | const _CharT __space = __os.widen(' '); |
| 483 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 484 | __os.fill(__space); |
| 485 | |
| 486 | for (size_t __i = 0; __i < __n; ++__i) |
| 487 | __os << __x._M_x[__i] << __space; |
| 488 | __os << __x._M_p; |
| 489 | |
| 490 | __os.flags(__flags); |
| 491 | __os.fill(__fill); |
| 492 | return __os; |
| 493 | } |
| 494 | |
| 495 | template<typename _UIntType, size_t __w, |
| 496 | size_t __n, size_t __m, size_t __r, |
| 497 | _UIntType __a, size_t __u, _UIntType __d, size_t __s, |
| 498 | _UIntType __b, size_t __t, _UIntType __c, size_t __l, |
| 499 | _UIntType __f, typename _CharT, typename _Traits> |
| 500 | std::basic_istream<_CharT, _Traits>& |
| 501 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 502 | mersenne_twister_engine<_UIntType, __w, __n, __m, |
| 503 | __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __x) |
| 504 | { |
| 505 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 506 | |
| 507 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 508 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 509 | |
| 510 | for (size_t __i = 0; __i < __n; ++__i) |
| 511 | __is >> __x._M_x[__i]; |
| 512 | __is >> __x._M_p; |
| 513 | |
| 514 | __is.flags(__flags); |
| 515 | return __is; |
| 516 | } |
| 517 | |
| 518 | |
| 519 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 520 | constexpr size_t |
| 521 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::word_size; |
| 522 | |
| 523 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 524 | constexpr size_t |
| 525 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::short_lag; |
| 526 | |
| 527 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 528 | constexpr size_t |
| 529 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::long_lag; |
| 530 | |
| 531 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 532 | constexpr _UIntType |
| 533 | subtract_with_carry_engine<_UIntType, __w, __s, __r>::default_seed; |
| 534 | |
| 535 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 536 | void |
| 537 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 538 | seed(result_type __value) |
| 539 | { |
| 540 | std::linear_congruential_engine<result_type, 40014u, 0u, 2147483563u> |
| 541 | __lcg(__value == 0u ? default_seed : __value); |
| 542 | |
| 543 | const size_t __n = (__w + 31) / 32; |
| 544 | |
| 545 | for (size_t __i = 0; __i < long_lag; ++__i) |
| 546 | { |
| 547 | _UIntType __sum = 0u; |
| 548 | _UIntType __factor = 1u; |
| 549 | for (size_t __j = 0; __j < __n; ++__j) |
| 550 | { |
| 551 | __sum += __detail::__mod<uint_least32_t, |
| 552 | __detail::_Shift<uint_least32_t, 32>::__value> |
| 553 | (__lcg()) * __factor; |
| 554 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 555 | } |
| 556 | _M_x[__i] = __detail::__mod<_UIntType, |
| 557 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
| 558 | } |
| 559 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| 560 | _M_p = 0; |
| 561 | } |
| 562 | |
| 563 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 564 | template<typename _Sseq> |
| 565 | auto |
| 566 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 567 | seed(_Sseq& __q) |
| 568 | -> _If_seed_seq<_Sseq> |
| 569 | { |
| 570 | const size_t __k = (__w + 31) / 32; |
| 571 | uint_least32_t __arr[__r * __k]; |
| 572 | __q.generate(__arr + 0, __arr + __r * __k); |
| 573 | |
| 574 | for (size_t __i = 0; __i < long_lag; ++__i) |
| 575 | { |
| 576 | _UIntType __sum = 0u; |
| 577 | _UIntType __factor = 1u; |
| 578 | for (size_t __j = 0; __j < __k; ++__j) |
| 579 | { |
| 580 | __sum += __arr[__k * __i + __j] * __factor; |
| 581 | __factor *= __detail::_Shift<_UIntType, 32>::__value; |
| 582 | } |
| 583 | _M_x[__i] = __detail::__mod<_UIntType, |
| 584 | __detail::_Shift<_UIntType, __w>::__value>(__sum); |
| 585 | } |
| 586 | _M_carry = (_M_x[long_lag - 1] == 0) ? 1 : 0; |
| 587 | _M_p = 0; |
| 588 | } |
| 589 | |
| 590 | template<typename _UIntType, size_t __w, size_t __s, size_t __r> |
| 591 | typename subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 592 | result_type |
| 593 | subtract_with_carry_engine<_UIntType, __w, __s, __r>:: |
| 594 | operator()() |
| 595 | { |
| 596 | // Derive short lag index from current index. |
| 597 | long __ps = _M_p - short_lag; |
| 598 | if (__ps < 0) |
| 599 | __ps += long_lag; |
| 600 | |
| 601 | // Calculate new x(i) without overflow or division. |
| 602 | // NB: Thanks to the requirements for _UIntType, _M_x[_M_p] + _M_carry |
| 603 | // cannot overflow. |
| 604 | _UIntType __xi; |
| 605 | if (_M_x[__ps] >= _M_x[_M_p] + _M_carry) |
| 606 | { |
| 607 | __xi = _M_x[__ps] - _M_x[_M_p] - _M_carry; |
| 608 | _M_carry = 0; |
| 609 | } |
| 610 | else |
| 611 | { |
| 612 | __xi = (__detail::_Shift<_UIntType, __w>::__value |
| 613 | - _M_x[_M_p] - _M_carry + _M_x[__ps]); |
| 614 | _M_carry = 1; |
| 615 | } |
| 616 | _M_x[_M_p] = __xi; |
| 617 | |
| 618 | // Adjust current index to loop around in ring buffer. |
| 619 | if (++_M_p >= long_lag) |
| 620 | _M_p = 0; |
| 621 | |
| 622 | return __xi; |
| 623 | } |
| 624 | |
| 625 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
| 626 | typename _CharT, typename _Traits> |
| 627 | std::basic_ostream<_CharT, _Traits>& |
| 628 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 629 | const subtract_with_carry_engine<_UIntType, |
| 630 | __w, __s, __r>& __x) |
| 631 | { |
| 632 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 633 | |
| 634 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 635 | const _CharT __fill = __os.fill(); |
| 636 | const _CharT __space = __os.widen(' '); |
| 637 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 638 | __os.fill(__space); |
| 639 | |
| 640 | for (size_t __i = 0; __i < __r; ++__i) |
| 641 | __os << __x._M_x[__i] << __space; |
| 642 | __os << __x._M_carry << __space << __x._M_p; |
| 643 | |
| 644 | __os.flags(__flags); |
| 645 | __os.fill(__fill); |
| 646 | return __os; |
| 647 | } |
| 648 | |
| 649 | template<typename _UIntType, size_t __w, size_t __s, size_t __r, |
| 650 | typename _CharT, typename _Traits> |
| 651 | std::basic_istream<_CharT, _Traits>& |
| 652 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 653 | subtract_with_carry_engine<_UIntType, __w, __s, __r>& __x) |
| 654 | { |
| 655 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 656 | |
| 657 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 658 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 659 | |
| 660 | for (size_t __i = 0; __i < __r; ++__i) |
| 661 | __is >> __x._M_x[__i]; |
| 662 | __is >> __x._M_carry; |
| 663 | __is >> __x._M_p; |
| 664 | |
| 665 | __is.flags(__flags); |
| 666 | return __is; |
| 667 | } |
| 668 | |
| 669 | |
| 670 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 671 | constexpr size_t |
| 672 | discard_block_engine<_RandomNumberEngine, __p, __r>::block_size; |
| 673 | |
| 674 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 675 | constexpr size_t |
| 676 | discard_block_engine<_RandomNumberEngine, __p, __r>::used_block; |
| 677 | |
| 678 | template<typename _RandomNumberEngine, size_t __p, size_t __r> |
| 679 | typename discard_block_engine<_RandomNumberEngine, |
| 680 | __p, __r>::result_type |
| 681 | discard_block_engine<_RandomNumberEngine, __p, __r>:: |
| 682 | operator()() |
| 683 | { |
| 684 | if (_M_n >= used_block) |
| 685 | { |
| 686 | _M_b.discard(block_size - _M_n); |
| 687 | _M_n = 0; |
| 688 | } |
| 689 | ++_M_n; |
| 690 | return _M_b(); |
| 691 | } |
| 692 | |
| 693 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
| 694 | typename _CharT, typename _Traits> |
| 695 | std::basic_ostream<_CharT, _Traits>& |
| 696 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 697 | const discard_block_engine<_RandomNumberEngine, |
| 698 | __p, __r>& __x) |
| 699 | { |
| 700 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 701 | |
| 702 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 703 | const _CharT __fill = __os.fill(); |
| 704 | const _CharT __space = __os.widen(' '); |
| 705 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 706 | __os.fill(__space); |
| 707 | |
| 708 | __os << __x.base() << __space << __x._M_n; |
| 709 | |
| 710 | __os.flags(__flags); |
| 711 | __os.fill(__fill); |
| 712 | return __os; |
| 713 | } |
| 714 | |
| 715 | template<typename _RandomNumberEngine, size_t __p, size_t __r, |
| 716 | typename _CharT, typename _Traits> |
| 717 | std::basic_istream<_CharT, _Traits>& |
| 718 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 719 | discard_block_engine<_RandomNumberEngine, __p, __r>& __x) |
| 720 | { |
| 721 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 722 | |
| 723 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 724 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 725 | |
| 726 | __is >> __x._M_b >> __x._M_n; |
| 727 | |
| 728 | __is.flags(__flags); |
| 729 | return __is; |
| 730 | } |
| 731 | |
| 732 | |
| 733 | template<typename _RandomNumberEngine, size_t __w, typename _UIntType> |
| 734 | typename independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
| 735 | result_type |
| 736 | independent_bits_engine<_RandomNumberEngine, __w, _UIntType>:: |
| 737 | operator()() |
| 738 | { |
| 739 | typedef typename _RandomNumberEngine::result_type _Eresult_type; |
| 740 | const _Eresult_type __r |
| 741 | = (_M_b.max() - _M_b.min() < std::numeric_limits<_Eresult_type>::max() |
| 742 | ? _M_b.max() - _M_b.min() + 1 : 0); |
| 743 | const unsigned __edig = std::numeric_limits<_Eresult_type>::digits; |
| 744 | const unsigned __m = __r ? std::__lg(__r) : __edig; |
| 745 | |
| 746 | typedef typename std::common_type<_Eresult_type, result_type>::type |
| 747 | __ctype; |
| 748 | const unsigned __cdig = std::numeric_limits<__ctype>::digits; |
| 749 | |
| 750 | unsigned __n, __n0; |
| 751 | __ctype __s0, __s1, __y0, __y1; |
| 752 | |
| 753 | for (size_t __i = 0; __i < 2; ++__i) |
| 754 | { |
| 755 | __n = (__w + __m - 1) / __m + __i; |
| 756 | __n0 = __n - __w % __n; |
| 757 | const unsigned __w0 = __w / __n; // __w0 <= __m |
| 758 | |
| 759 | __s0 = 0; |
| 760 | __s1 = 0; |
| 761 | if (__w0 < __cdig) |
| 762 | { |
| 763 | __s0 = __ctype(1) << __w0; |
| 764 | __s1 = __s0 << 1; |
| 765 | } |
| 766 | |
| 767 | __y0 = 0; |
| 768 | __y1 = 0; |
| 769 | if (__r) |
| 770 | { |
| 771 | __y0 = __s0 * (__r / __s0); |
| 772 | if (__s1) |
| 773 | __y1 = __s1 * (__r / __s1); |
| 774 | |
| 775 | if (__r - __y0 <= __y0 / __n) |
| 776 | break; |
| 777 | } |
| 778 | else |
| 779 | break; |
| 780 | } |
| 781 | |
| 782 | result_type __sum = 0; |
| 783 | for (size_t __k = 0; __k < __n0; ++__k) |
| 784 | { |
| 785 | __ctype __u; |
| 786 | do |
| 787 | __u = _M_b() - _M_b.min(); |
| 788 | while (__y0 && __u >= __y0); |
| 789 | __sum = __s0 * __sum + (__s0 ? __u % __s0 : __u); |
| 790 | } |
| 791 | for (size_t __k = __n0; __k < __n; ++__k) |
| 792 | { |
| 793 | __ctype __u; |
| 794 | do |
| 795 | __u = _M_b() - _M_b.min(); |
| 796 | while (__y1 && __u >= __y1); |
| 797 | __sum = __s1 * __sum + (__s1 ? __u % __s1 : __u); |
| 798 | } |
| 799 | return __sum; |
| 800 | } |
| 801 | |
| 802 | |
| 803 | template<typename _RandomNumberEngine, size_t __k> |
| 804 | constexpr size_t |
| 805 | shuffle_order_engine<_RandomNumberEngine, __k>::table_size; |
| 806 | |
| 807 | namespace __detail |
| 808 | { |
| 809 | // Determine whether an integer is representable as double. |
| 810 | template<typename _Tp> |
| 811 | constexpr bool |
| 812 | __representable_as_double(_Tp __x) noexcept |
| 813 | { |
| 814 | static_assert(numeric_limits<_Tp>::is_integer, "" ); |
| 815 | static_assert(!numeric_limits<_Tp>::is_signed, "" ); |
| 816 | // All integers <= 2^53 are representable. |
| 817 | return (__x <= (1ull << __DBL_MANT_DIG__)) |
| 818 | // Between 2^53 and 2^54 only even numbers are representable. |
| 819 | || (!(__x & 1) && __detail::__representable_as_double(__x >> 1)); |
| 820 | } |
| 821 | |
| 822 | // Determine whether x+1 is representable as double. |
| 823 | template<typename _Tp> |
| 824 | constexpr bool |
| 825 | __p1_representable_as_double(_Tp __x) noexcept |
| 826 | { |
| 827 | static_assert(numeric_limits<_Tp>::is_integer, "" ); |
| 828 | static_assert(!numeric_limits<_Tp>::is_signed, "" ); |
| 829 | return numeric_limits<_Tp>::digits < __DBL_MANT_DIG__ |
| 830 | || (bool(__x + 1u) // return false if x+1 wraps around to zero |
| 831 | && __detail::__representable_as_double(__x + 1u)); |
| 832 | } |
| 833 | } |
| 834 | |
| 835 | template<typename _RandomNumberEngine, size_t __k> |
| 836 | typename shuffle_order_engine<_RandomNumberEngine, __k>::result_type |
| 837 | shuffle_order_engine<_RandomNumberEngine, __k>:: |
| 838 | operator()() |
| 839 | { |
| 840 | constexpr result_type __range = max() - min(); |
| 841 | size_t __j = __k; |
| 842 | const result_type __y = _M_y - min(); |
| 843 | // Avoid using slower long double arithmetic if possible. |
| 844 | if _GLIBCXX17_CONSTEXPR (__detail::__p1_representable_as_double(__range)) |
| 845 | __j *= __y / (__range + 1.0); |
| 846 | else |
| 847 | __j *= __y / (__range + 1.0L); |
| 848 | _M_y = _M_v[__j]; |
| 849 | _M_v[__j] = _M_b(); |
| 850 | |
| 851 | return _M_y; |
| 852 | } |
| 853 | |
| 854 | template<typename _RandomNumberEngine, size_t __k, |
| 855 | typename _CharT, typename _Traits> |
| 856 | std::basic_ostream<_CharT, _Traits>& |
| 857 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 858 | const shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
| 859 | { |
| 860 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 861 | |
| 862 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 863 | const _CharT __fill = __os.fill(); |
| 864 | const _CharT __space = __os.widen(' '); |
| 865 | __os.flags(__ios_base::dec | __ios_base::fixed | __ios_base::left); |
| 866 | __os.fill(__space); |
| 867 | |
| 868 | __os << __x.base(); |
| 869 | for (size_t __i = 0; __i < __k; ++__i) |
| 870 | __os << __space << __x._M_v[__i]; |
| 871 | __os << __space << __x._M_y; |
| 872 | |
| 873 | __os.flags(__flags); |
| 874 | __os.fill(__fill); |
| 875 | return __os; |
| 876 | } |
| 877 | |
| 878 | template<typename _RandomNumberEngine, size_t __k, |
| 879 | typename _CharT, typename _Traits> |
| 880 | std::basic_istream<_CharT, _Traits>& |
| 881 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 882 | shuffle_order_engine<_RandomNumberEngine, __k>& __x) |
| 883 | { |
| 884 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 885 | |
| 886 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 887 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 888 | |
| 889 | __is >> __x._M_b; |
| 890 | for (size_t __i = 0; __i < __k; ++__i) |
| 891 | __is >> __x._M_v[__i]; |
| 892 | __is >> __x._M_y; |
| 893 | |
| 894 | __is.flags(__flags); |
| 895 | return __is; |
| 896 | } |
| 897 | |
| 898 | |
| 899 | template<typename _IntType, typename _CharT, typename _Traits> |
| 900 | std::basic_ostream<_CharT, _Traits>& |
| 901 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 902 | const uniform_int_distribution<_IntType>& __x) |
| 903 | { |
| 904 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 905 | |
| 906 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 907 | const _CharT __fill = __os.fill(); |
| 908 | const _CharT __space = __os.widen(' '); |
| 909 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 910 | __os.fill(__space); |
| 911 | |
| 912 | __os << __x.a() << __space << __x.b(); |
| 913 | |
| 914 | __os.flags(__flags); |
| 915 | __os.fill(__fill); |
| 916 | return __os; |
| 917 | } |
| 918 | |
| 919 | template<typename _IntType, typename _CharT, typename _Traits> |
| 920 | std::basic_istream<_CharT, _Traits>& |
| 921 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 922 | uniform_int_distribution<_IntType>& __x) |
| 923 | { |
| 924 | using param_type |
| 925 | = typename uniform_int_distribution<_IntType>::param_type; |
| 926 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 927 | |
| 928 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 929 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 930 | |
| 931 | _IntType __a, __b; |
| 932 | if (__is >> __a >> __b) |
| 933 | __x.param(param_type(__a, __b)); |
| 934 | |
| 935 | __is.flags(__flags); |
| 936 | return __is; |
| 937 | } |
| 938 | |
| 939 | |
| 940 | template<typename _RealType> |
| 941 | template<typename _ForwardIterator, |
| 942 | typename _UniformRandomNumberGenerator> |
| 943 | void |
| 944 | uniform_real_distribution<_RealType>:: |
| 945 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 946 | _UniformRandomNumberGenerator& __urng, |
| 947 | const param_type& __p) |
| 948 | { |
| 949 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 950 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 951 | __aurng(__urng); |
| 952 | auto __range = __p.b() - __p.a(); |
| 953 | while (__f != __t) |
| 954 | *__f++ = __aurng() * __range + __p.a(); |
| 955 | } |
| 956 | |
| 957 | template<typename _RealType, typename _CharT, typename _Traits> |
| 958 | std::basic_ostream<_CharT, _Traits>& |
| 959 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 960 | const uniform_real_distribution<_RealType>& __x) |
| 961 | { |
| 962 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 963 | |
| 964 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 965 | const _CharT __fill = __os.fill(); |
| 966 | const std::streamsize __precision = __os.precision(); |
| 967 | const _CharT __space = __os.widen(' '); |
| 968 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 969 | __os.fill(__space); |
| 970 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 971 | |
| 972 | __os << __x.a() << __space << __x.b(); |
| 973 | |
| 974 | __os.flags(__flags); |
| 975 | __os.fill(__fill); |
| 976 | __os.precision(__precision); |
| 977 | return __os; |
| 978 | } |
| 979 | |
| 980 | template<typename _RealType, typename _CharT, typename _Traits> |
| 981 | std::basic_istream<_CharT, _Traits>& |
| 982 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 983 | uniform_real_distribution<_RealType>& __x) |
| 984 | { |
| 985 | using param_type |
| 986 | = typename uniform_real_distribution<_RealType>::param_type; |
| 987 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 988 | |
| 989 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 990 | __is.flags(__ios_base::skipws); |
| 991 | |
| 992 | _RealType __a, __b; |
| 993 | if (__is >> __a >> __b) |
| 994 | __x.param(param_type(__a, __b)); |
| 995 | |
| 996 | __is.flags(__flags); |
| 997 | return __is; |
| 998 | } |
| 999 | |
| 1000 | |
| 1001 | template<typename _ForwardIterator, |
| 1002 | typename _UniformRandomNumberGenerator> |
| 1003 | void |
| 1004 | std::bernoulli_distribution:: |
| 1005 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1006 | _UniformRandomNumberGenerator& __urng, |
| 1007 | const param_type& __p) |
| 1008 | { |
| 1009 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1010 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1011 | __aurng(__urng); |
| 1012 | auto __limit = __p.p() * (__aurng.max() - __aurng.min()); |
| 1013 | |
| 1014 | while (__f != __t) |
| 1015 | *__f++ = (__aurng() - __aurng.min()) < __limit; |
| 1016 | } |
| 1017 | |
| 1018 | template<typename _CharT, typename _Traits> |
| 1019 | std::basic_ostream<_CharT, _Traits>& |
| 1020 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1021 | const bernoulli_distribution& __x) |
| 1022 | { |
| 1023 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1024 | |
| 1025 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1026 | const _CharT __fill = __os.fill(); |
| 1027 | const std::streamsize __precision = __os.precision(); |
| 1028 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1029 | __os.fill(__os.widen(' ')); |
| 1030 | __os.precision(std::numeric_limits<double>::max_digits10); |
| 1031 | |
| 1032 | __os << __x.p(); |
| 1033 | |
| 1034 | __os.flags(__flags); |
| 1035 | __os.fill(__fill); |
| 1036 | __os.precision(__precision); |
| 1037 | return __os; |
| 1038 | } |
| 1039 | |
| 1040 | |
| 1041 | template<typename _IntType> |
| 1042 | template<typename _UniformRandomNumberGenerator> |
| 1043 | typename geometric_distribution<_IntType>::result_type |
| 1044 | geometric_distribution<_IntType>:: |
| 1045 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1046 | const param_type& __param) |
| 1047 | { |
| 1048 | // About the epsilon thing see this thread: |
| 1049 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| 1050 | const double __naf = |
| 1051 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1052 | // The largest _RealType convertible to _IntType. |
| 1053 | const double __thr = |
| 1054 | std::numeric_limits<_IntType>::max() + __naf; |
| 1055 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1056 | __aurng(__urng); |
| 1057 | |
| 1058 | double __cand; |
| 1059 | do |
| 1060 | __cand = std::floor(std::log(1.0 - __aurng()) / __param._M_log_1_p); |
| 1061 | while (__cand >= __thr); |
| 1062 | |
| 1063 | return result_type(__cand + __naf); |
| 1064 | } |
| 1065 | |
| 1066 | template<typename _IntType> |
| 1067 | template<typename _ForwardIterator, |
| 1068 | typename _UniformRandomNumberGenerator> |
| 1069 | void |
| 1070 | geometric_distribution<_IntType>:: |
| 1071 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1072 | _UniformRandomNumberGenerator& __urng, |
| 1073 | const param_type& __param) |
| 1074 | { |
| 1075 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1076 | // About the epsilon thing see this thread: |
| 1077 | // http://gcc.gnu.org/ml/gcc-patches/2006-10/msg00971.html |
| 1078 | const double __naf = |
| 1079 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1080 | // The largest _RealType convertible to _IntType. |
| 1081 | const double __thr = |
| 1082 | std::numeric_limits<_IntType>::max() + __naf; |
| 1083 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1084 | __aurng(__urng); |
| 1085 | |
| 1086 | while (__f != __t) |
| 1087 | { |
| 1088 | double __cand; |
| 1089 | do |
| 1090 | __cand = std::floor(std::log(1.0 - __aurng()) |
| 1091 | / __param._M_log_1_p); |
| 1092 | while (__cand >= __thr); |
| 1093 | |
| 1094 | *__f++ = __cand + __naf; |
| 1095 | } |
| 1096 | } |
| 1097 | |
| 1098 | template<typename _IntType, |
| 1099 | typename _CharT, typename _Traits> |
| 1100 | std::basic_ostream<_CharT, _Traits>& |
| 1101 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1102 | const geometric_distribution<_IntType>& __x) |
| 1103 | { |
| 1104 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1105 | |
| 1106 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1107 | const _CharT __fill = __os.fill(); |
| 1108 | const std::streamsize __precision = __os.precision(); |
| 1109 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1110 | __os.fill(__os.widen(' ')); |
| 1111 | __os.precision(std::numeric_limits<double>::max_digits10); |
| 1112 | |
| 1113 | __os << __x.p(); |
| 1114 | |
| 1115 | __os.flags(__flags); |
| 1116 | __os.fill(__fill); |
| 1117 | __os.precision(__precision); |
| 1118 | return __os; |
| 1119 | } |
| 1120 | |
| 1121 | template<typename _IntType, |
| 1122 | typename _CharT, typename _Traits> |
| 1123 | std::basic_istream<_CharT, _Traits>& |
| 1124 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1125 | geometric_distribution<_IntType>& __x) |
| 1126 | { |
| 1127 | using param_type = typename geometric_distribution<_IntType>::param_type; |
| 1128 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1129 | |
| 1130 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1131 | __is.flags(__ios_base::skipws); |
| 1132 | |
| 1133 | double __p; |
| 1134 | if (__is >> __p) |
| 1135 | __x.param(param_type(__p)); |
| 1136 | |
| 1137 | __is.flags(__flags); |
| 1138 | return __is; |
| 1139 | } |
| 1140 | |
| 1141 | // This is Leger's algorithm, also in Devroye, Ch. X, Example 1.5. |
| 1142 | template<typename _IntType> |
| 1143 | template<typename _UniformRandomNumberGenerator> |
| 1144 | typename negative_binomial_distribution<_IntType>::result_type |
| 1145 | negative_binomial_distribution<_IntType>:: |
| 1146 | operator()(_UniformRandomNumberGenerator& __urng) |
| 1147 | { |
| 1148 | const double __y = _M_gd(__urng); |
| 1149 | |
| 1150 | // XXX Is the constructor too slow? |
| 1151 | std::poisson_distribution<result_type> __poisson(__y); |
| 1152 | return __poisson(__urng); |
| 1153 | } |
| 1154 | |
| 1155 | template<typename _IntType> |
| 1156 | template<typename _UniformRandomNumberGenerator> |
| 1157 | typename negative_binomial_distribution<_IntType>::result_type |
| 1158 | negative_binomial_distribution<_IntType>:: |
| 1159 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1160 | const param_type& __p) |
| 1161 | { |
| 1162 | typedef typename std::gamma_distribution<double>::param_type |
| 1163 | param_type; |
| 1164 | |
| 1165 | const double __y = |
| 1166 | _M_gd(__urng, param_type(__p.k(), (1.0 - __p.p()) / __p.p())); |
| 1167 | |
| 1168 | std::poisson_distribution<result_type> __poisson(__y); |
| 1169 | return __poisson(__urng); |
| 1170 | } |
| 1171 | |
| 1172 | template<typename _IntType> |
| 1173 | template<typename _ForwardIterator, |
| 1174 | typename _UniformRandomNumberGenerator> |
| 1175 | void |
| 1176 | negative_binomial_distribution<_IntType>:: |
| 1177 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1178 | _UniformRandomNumberGenerator& __urng) |
| 1179 | { |
| 1180 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1181 | while (__f != __t) |
| 1182 | { |
| 1183 | const double __y = _M_gd(__urng); |
| 1184 | |
| 1185 | // XXX Is the constructor too slow? |
| 1186 | std::poisson_distribution<result_type> __poisson(__y); |
| 1187 | *__f++ = __poisson(__urng); |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | template<typename _IntType> |
| 1192 | template<typename _ForwardIterator, |
| 1193 | typename _UniformRandomNumberGenerator> |
| 1194 | void |
| 1195 | negative_binomial_distribution<_IntType>:: |
| 1196 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1197 | _UniformRandomNumberGenerator& __urng, |
| 1198 | const param_type& __p) |
| 1199 | { |
| 1200 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1201 | typename std::gamma_distribution<result_type>::param_type |
| 1202 | __p2(__p.k(), (1.0 - __p.p()) / __p.p()); |
| 1203 | |
| 1204 | while (__f != __t) |
| 1205 | { |
| 1206 | const double __y = _M_gd(__urng, __p2); |
| 1207 | |
| 1208 | std::poisson_distribution<result_type> __poisson(__y); |
| 1209 | *__f++ = __poisson(__urng); |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | template<typename _IntType, typename _CharT, typename _Traits> |
| 1214 | std::basic_ostream<_CharT, _Traits>& |
| 1215 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1216 | const negative_binomial_distribution<_IntType>& __x) |
| 1217 | { |
| 1218 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1219 | |
| 1220 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1221 | const _CharT __fill = __os.fill(); |
| 1222 | const std::streamsize __precision = __os.precision(); |
| 1223 | const _CharT __space = __os.widen(' '); |
| 1224 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1225 | __os.fill(__os.widen(' ')); |
| 1226 | __os.precision(std::numeric_limits<double>::max_digits10); |
| 1227 | |
| 1228 | __os << __x.k() << __space << __x.p() |
| 1229 | << __space << __x._M_gd; |
| 1230 | |
| 1231 | __os.flags(__flags); |
| 1232 | __os.fill(__fill); |
| 1233 | __os.precision(__precision); |
| 1234 | return __os; |
| 1235 | } |
| 1236 | |
| 1237 | template<typename _IntType, typename _CharT, typename _Traits> |
| 1238 | std::basic_istream<_CharT, _Traits>& |
| 1239 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1240 | negative_binomial_distribution<_IntType>& __x) |
| 1241 | { |
| 1242 | using param_type |
| 1243 | = typename negative_binomial_distribution<_IntType>::param_type; |
| 1244 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1245 | |
| 1246 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1247 | __is.flags(__ios_base::skipws); |
| 1248 | |
| 1249 | _IntType __k; |
| 1250 | double __p; |
| 1251 | if (__is >> __k >> __p >> __x._M_gd) |
| 1252 | __x.param(param_type(__k, __p)); |
| 1253 | |
| 1254 | __is.flags(__flags); |
| 1255 | return __is; |
| 1256 | } |
| 1257 | |
| 1258 | |
| 1259 | template<typename _IntType> |
| 1260 | void |
| 1261 | poisson_distribution<_IntType>::param_type:: |
| 1262 | _M_initialize() |
| 1263 | { |
| 1264 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 1265 | if (_M_mean >= 12) |
| 1266 | { |
| 1267 | const double __m = std::floor(x: _M_mean); |
| 1268 | _M_lm_thr = std::log(x: _M_mean); |
| 1269 | _M_lfm = std::lgamma(__m + 1); |
| 1270 | _M_sm = std::sqrt(x: __m); |
| 1271 | |
| 1272 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
| 1273 | const double __dx = std::sqrt(x: 2 * __m * std::log(x: 32 * __m |
| 1274 | / __pi_4)); |
| 1275 | _M_d = std::round(x: std::max<double>(a: 6.0, b: std::min(a: __m, b: __dx))); |
| 1276 | const double __cx = 2 * __m + _M_d; |
| 1277 | _M_scx = std::sqrt(x: __cx / 2); |
| 1278 | _M_1cx = 1 / __cx; |
| 1279 | |
| 1280 | _M_c2b = std::sqrt(x: __pi_4 * __cx) * std::exp(x: _M_1cx); |
| 1281 | _M_cb = 2 * __cx * std::exp(x: -_M_d * _M_1cx * (1 + _M_d / 2)) |
| 1282 | / _M_d; |
| 1283 | } |
| 1284 | else |
| 1285 | #endif |
| 1286 | _M_lm_thr = std::exp(x: -_M_mean); |
| 1287 | } |
| 1288 | |
| 1289 | /** |
| 1290 | * A rejection algorithm when mean >= 12 and a simple method based |
| 1291 | * upon the multiplication of uniform random variates otherwise. |
| 1292 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
| 1293 | * is defined. |
| 1294 | * |
| 1295 | * Reference: |
| 1296 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| 1297 | * New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!). |
| 1298 | */ |
| 1299 | template<typename _IntType> |
| 1300 | template<typename _UniformRandomNumberGenerator> |
| 1301 | typename poisson_distribution<_IntType>::result_type |
| 1302 | poisson_distribution<_IntType>:: |
| 1303 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1304 | const param_type& __param) |
| 1305 | { |
| 1306 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1307 | __aurng(__urng); |
| 1308 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 1309 | if (__param.mean() >= 12) |
| 1310 | { |
| 1311 | double __x; |
| 1312 | |
| 1313 | // See comments above... |
| 1314 | const double __naf = |
| 1315 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1316 | const double __thr = |
| 1317 | std::numeric_limits<_IntType>::max() + __naf; |
| 1318 | |
| 1319 | const double __m = std::floor(__param.mean()); |
| 1320 | // sqrt(pi / 2) |
| 1321 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
| 1322 | const double __c1 = __param._M_sm * __spi_2; |
| 1323 | const double __c2 = __param._M_c2b + __c1; |
| 1324 | const double __c3 = __c2 + 1; |
| 1325 | const double __c4 = __c3 + 1; |
| 1326 | // 1 / 78 |
| 1327 | const double __178 = 0.0128205128205128205128205128205128L; |
| 1328 | // e^(1 / 78) |
| 1329 | const double __e178 = 1.0129030479320018583185514777512983L; |
| 1330 | const double __c5 = __c4 + __e178; |
| 1331 | const double __c = __param._M_cb + __c5; |
| 1332 | const double __2cx = 2 * (2 * __m + __param._M_d); |
| 1333 | |
| 1334 | bool __reject = true; |
| 1335 | do |
| 1336 | { |
| 1337 | const double __u = __c * __aurng(); |
| 1338 | const double __e = -std::log(1.0 - __aurng()); |
| 1339 | |
| 1340 | double __w = 0.0; |
| 1341 | |
| 1342 | if (__u <= __c1) |
| 1343 | { |
| 1344 | const double __n = _M_nd(__urng); |
| 1345 | const double __y = -std::abs(x: __n) * __param._M_sm - 1; |
| 1346 | __x = std::floor(x: __y); |
| 1347 | __w = -__n * __n / 2; |
| 1348 | if (__x < -__m) |
| 1349 | continue; |
| 1350 | } |
| 1351 | else if (__u <= __c2) |
| 1352 | { |
| 1353 | const double __n = _M_nd(__urng); |
| 1354 | const double __y = 1 + std::abs(x: __n) * __param._M_scx; |
| 1355 | __x = std::ceil(x: __y); |
| 1356 | __w = __y * (2 - __y) * __param._M_1cx; |
| 1357 | if (__x > __param._M_d) |
| 1358 | continue; |
| 1359 | } |
| 1360 | else if (__u <= __c3) |
| 1361 | // NB: This case not in the book, nor in the Errata, |
| 1362 | // but should be ok... |
| 1363 | __x = -1; |
| 1364 | else if (__u <= __c4) |
| 1365 | __x = 0; |
| 1366 | else if (__u <= __c5) |
| 1367 | { |
| 1368 | __x = 1; |
| 1369 | // Only in the Errata, see libstdc++/83237. |
| 1370 | __w = __178; |
| 1371 | } |
| 1372 | else |
| 1373 | { |
| 1374 | const double __v = -std::log(1.0 - __aurng()); |
| 1375 | const double __y = __param._M_d |
| 1376 | + __v * __2cx / __param._M_d; |
| 1377 | __x = std::ceil(x: __y); |
| 1378 | __w = -__param._M_d * __param._M_1cx * (1 + __y / 2); |
| 1379 | } |
| 1380 | |
| 1381 | __reject = (__w - __e - __x * __param._M_lm_thr |
| 1382 | > __param._M_lfm - std::lgamma(__x + __m + 1)); |
| 1383 | |
| 1384 | __reject |= __x + __m >= __thr; |
| 1385 | |
| 1386 | } while (__reject); |
| 1387 | |
| 1388 | return result_type(__x + __m + __naf); |
| 1389 | } |
| 1390 | else |
| 1391 | #endif |
| 1392 | { |
| 1393 | _IntType __x = 0; |
| 1394 | double __prod = 1.0; |
| 1395 | |
| 1396 | do |
| 1397 | { |
| 1398 | __prod *= __aurng(); |
| 1399 | __x += 1; |
| 1400 | } |
| 1401 | while (__prod > __param._M_lm_thr); |
| 1402 | |
| 1403 | return __x - 1; |
| 1404 | } |
| 1405 | } |
| 1406 | |
| 1407 | template<typename _IntType> |
| 1408 | template<typename _ForwardIterator, |
| 1409 | typename _UniformRandomNumberGenerator> |
| 1410 | void |
| 1411 | poisson_distribution<_IntType>:: |
| 1412 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1413 | _UniformRandomNumberGenerator& __urng, |
| 1414 | const param_type& __param) |
| 1415 | { |
| 1416 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1417 | // We could duplicate everything from operator()... |
| 1418 | while (__f != __t) |
| 1419 | *__f++ = this->operator()(__urng, __param); |
| 1420 | } |
| 1421 | |
| 1422 | template<typename _IntType, |
| 1423 | typename _CharT, typename _Traits> |
| 1424 | std::basic_ostream<_CharT, _Traits>& |
| 1425 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1426 | const poisson_distribution<_IntType>& __x) |
| 1427 | { |
| 1428 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1429 | |
| 1430 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1431 | const _CharT __fill = __os.fill(); |
| 1432 | const std::streamsize __precision = __os.precision(); |
| 1433 | const _CharT __space = __os.widen(' '); |
| 1434 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1435 | __os.fill(__space); |
| 1436 | __os.precision(std::numeric_limits<double>::max_digits10); |
| 1437 | |
| 1438 | __os << __x.mean() << __space << __x._M_nd; |
| 1439 | |
| 1440 | __os.flags(__flags); |
| 1441 | __os.fill(__fill); |
| 1442 | __os.precision(__precision); |
| 1443 | return __os; |
| 1444 | } |
| 1445 | |
| 1446 | template<typename _IntType, |
| 1447 | typename _CharT, typename _Traits> |
| 1448 | std::basic_istream<_CharT, _Traits>& |
| 1449 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1450 | poisson_distribution<_IntType>& __x) |
| 1451 | { |
| 1452 | using param_type = typename poisson_distribution<_IntType>::param_type; |
| 1453 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1454 | |
| 1455 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1456 | __is.flags(__ios_base::skipws); |
| 1457 | |
| 1458 | double __mean; |
| 1459 | if (__is >> __mean >> __x._M_nd) |
| 1460 | __x.param(param_type(__mean)); |
| 1461 | |
| 1462 | __is.flags(__flags); |
| 1463 | return __is; |
| 1464 | } |
| 1465 | |
| 1466 | |
| 1467 | template<typename _IntType> |
| 1468 | void |
| 1469 | binomial_distribution<_IntType>::param_type:: |
| 1470 | _M_initialize() |
| 1471 | { |
| 1472 | const double __p12 = _M_p <= 0.5 ? _M_p : 1.0 - _M_p; |
| 1473 | |
| 1474 | _M_easy = true; |
| 1475 | |
| 1476 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 1477 | if (_M_t * __p12 >= 8) |
| 1478 | { |
| 1479 | _M_easy = false; |
| 1480 | const double __np = std::floor(_M_t * __p12); |
| 1481 | const double __pa = __np / _M_t; |
| 1482 | const double __1p = 1 - __pa; |
| 1483 | |
| 1484 | const double __pi_4 = 0.7853981633974483096156608458198757L; |
| 1485 | const double __d1x = |
| 1486 | std::sqrt(x: __np * __1p * std::log(x: 32 * __np |
| 1487 | / (81 * __pi_4 * __1p))); |
| 1488 | _M_d1 = std::round(x: std::max<double>(a: 1.0, b: __d1x)); |
| 1489 | const double __d2x = |
| 1490 | std::sqrt(__np * __1p * std::log(32 * _M_t * __1p |
| 1491 | / (__pi_4 * __pa))); |
| 1492 | _M_d2 = std::round(x: std::max<double>(a: 1.0, b: __d2x)); |
| 1493 | |
| 1494 | // sqrt(pi / 2) |
| 1495 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
| 1496 | _M_s1 = std::sqrt(x: __np * __1p) * (1 + _M_d1 / (4 * __np)); |
| 1497 | _M_s2 = std::sqrt(x: __np * __1p) * (1 + _M_d2 / (4 * _M_t * __1p)); |
| 1498 | _M_c = 2 * _M_d1 / __np; |
| 1499 | _M_a1 = std::exp(x: _M_c) * _M_s1 * __spi_2; |
| 1500 | const double __a12 = _M_a1 + _M_s2 * __spi_2; |
| 1501 | const double __s1s = _M_s1 * _M_s1; |
| 1502 | _M_a123 = __a12 + (std::exp(_M_d1 / (_M_t * __1p)) |
| 1503 | * 2 * __s1s / _M_d1 |
| 1504 | * std::exp(x: -_M_d1 * _M_d1 / (2 * __s1s))); |
| 1505 | const double __s2s = _M_s2 * _M_s2; |
| 1506 | _M_s = (_M_a123 + 2 * __s2s / _M_d2 |
| 1507 | * std::exp(x: -_M_d2 * _M_d2 / (2 * __s2s))); |
| 1508 | _M_lf = (std::lgamma(__np + 1) |
| 1509 | + std::lgamma(_M_t - __np + 1)); |
| 1510 | _M_lp1p = std::log(x: __pa / __1p); |
| 1511 | |
| 1512 | _M_q = -std::log(x: 1 - (__p12 - __pa) / __1p); |
| 1513 | } |
| 1514 | else |
| 1515 | #endif |
| 1516 | _M_q = -std::log(x: 1 - __p12); |
| 1517 | } |
| 1518 | |
| 1519 | template<typename _IntType> |
| 1520 | template<typename _UniformRandomNumberGenerator> |
| 1521 | typename binomial_distribution<_IntType>::result_type |
| 1522 | binomial_distribution<_IntType>:: |
| 1523 | _M_waiting(_UniformRandomNumberGenerator& __urng, |
| 1524 | _IntType __t, double __q) |
| 1525 | { |
| 1526 | _IntType __x = 0; |
| 1527 | double __sum = 0.0; |
| 1528 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1529 | __aurng(__urng); |
| 1530 | |
| 1531 | do |
| 1532 | { |
| 1533 | if (__t == __x) |
| 1534 | return __x; |
| 1535 | const double __e = -std::log(1.0 - __aurng()); |
| 1536 | __sum += __e / (__t - __x); |
| 1537 | __x += 1; |
| 1538 | } |
| 1539 | while (__sum <= __q); |
| 1540 | |
| 1541 | return __x - 1; |
| 1542 | } |
| 1543 | |
| 1544 | /** |
| 1545 | * A rejection algorithm when t * p >= 8 and a simple waiting time |
| 1546 | * method - the second in the referenced book - otherwise. |
| 1547 | * NB: The former is available only if _GLIBCXX_USE_C99_MATH_TR1 |
| 1548 | * is defined. |
| 1549 | * |
| 1550 | * Reference: |
| 1551 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| 1552 | * New York, 1986, Ch. X, Sect. 4 (+ Errata!). |
| 1553 | */ |
| 1554 | template<typename _IntType> |
| 1555 | template<typename _UniformRandomNumberGenerator> |
| 1556 | typename binomial_distribution<_IntType>::result_type |
| 1557 | binomial_distribution<_IntType>:: |
| 1558 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1559 | const param_type& __param) |
| 1560 | { |
| 1561 | result_type __ret; |
| 1562 | const _IntType __t = __param.t(); |
| 1563 | const double __p = __param.p(); |
| 1564 | const double __p12 = __p <= 0.5 ? __p : 1.0 - __p; |
| 1565 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 1566 | __aurng(__urng); |
| 1567 | |
| 1568 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 1569 | if (!__param._M_easy) |
| 1570 | { |
| 1571 | double __x; |
| 1572 | |
| 1573 | // See comments above... |
| 1574 | const double __naf = |
| 1575 | (1 - std::numeric_limits<double>::epsilon()) / 2; |
| 1576 | const double __thr = |
| 1577 | std::numeric_limits<_IntType>::max() + __naf; |
| 1578 | |
| 1579 | const double __np = std::floor(__t * __p12); |
| 1580 | |
| 1581 | // sqrt(pi / 2) |
| 1582 | const double __spi_2 = 1.2533141373155002512078826424055226L; |
| 1583 | const double __a1 = __param._M_a1; |
| 1584 | const double __a12 = __a1 + __param._M_s2 * __spi_2; |
| 1585 | const double __a123 = __param._M_a123; |
| 1586 | const double __s1s = __param._M_s1 * __param._M_s1; |
| 1587 | const double __s2s = __param._M_s2 * __param._M_s2; |
| 1588 | |
| 1589 | bool __reject; |
| 1590 | do |
| 1591 | { |
| 1592 | const double __u = __param._M_s * __aurng(); |
| 1593 | |
| 1594 | double __v; |
| 1595 | |
| 1596 | if (__u <= __a1) |
| 1597 | { |
| 1598 | const double __n = _M_nd(__urng); |
| 1599 | const double __y = __param._M_s1 * std::abs(x: __n); |
| 1600 | __reject = __y >= __param._M_d1; |
| 1601 | if (!__reject) |
| 1602 | { |
| 1603 | const double __e = -std::log(1.0 - __aurng()); |
| 1604 | __x = std::floor(x: __y); |
| 1605 | __v = -__e - __n * __n / 2 + __param._M_c; |
| 1606 | } |
| 1607 | } |
| 1608 | else if (__u <= __a12) |
| 1609 | { |
| 1610 | const double __n = _M_nd(__urng); |
| 1611 | const double __y = __param._M_s2 * std::abs(x: __n); |
| 1612 | __reject = __y >= __param._M_d2; |
| 1613 | if (!__reject) |
| 1614 | { |
| 1615 | const double __e = -std::log(1.0 - __aurng()); |
| 1616 | __x = std::floor(x: -__y); |
| 1617 | __v = -__e - __n * __n / 2; |
| 1618 | } |
| 1619 | } |
| 1620 | else if (__u <= __a123) |
| 1621 | { |
| 1622 | const double __e1 = -std::log(1.0 - __aurng()); |
| 1623 | const double __e2 = -std::log(1.0 - __aurng()); |
| 1624 | |
| 1625 | const double __y = __param._M_d1 |
| 1626 | + 2 * __s1s * __e1 / __param._M_d1; |
| 1627 | __x = std::floor(x: __y); |
| 1628 | __v = (-__e2 + __param._M_d1 * (1 / (__t - __np) |
| 1629 | -__y / (2 * __s1s))); |
| 1630 | __reject = false; |
| 1631 | } |
| 1632 | else |
| 1633 | { |
| 1634 | const double __e1 = -std::log(1.0 - __aurng()); |
| 1635 | const double __e2 = -std::log(1.0 - __aurng()); |
| 1636 | |
| 1637 | const double __y = __param._M_d2 |
| 1638 | + 2 * __s2s * __e1 / __param._M_d2; |
| 1639 | __x = std::floor(x: -__y); |
| 1640 | __v = -__e2 - __param._M_d2 * __y / (2 * __s2s); |
| 1641 | __reject = false; |
| 1642 | } |
| 1643 | |
| 1644 | __reject = __reject || __x < -__np || __x > __t - __np; |
| 1645 | if (!__reject) |
| 1646 | { |
| 1647 | const double __lfx = |
| 1648 | std::lgamma(__np + __x + 1) |
| 1649 | + std::lgamma(__t - (__np + __x) + 1); |
| 1650 | __reject = __v > __param._M_lf - __lfx |
| 1651 | + __x * __param._M_lp1p; |
| 1652 | } |
| 1653 | |
| 1654 | __reject |= __x + __np >= __thr; |
| 1655 | } |
| 1656 | while (__reject); |
| 1657 | |
| 1658 | __x += __np + __naf; |
| 1659 | |
| 1660 | const _IntType __z = _M_waiting(__urng, __t - _IntType(__x), |
| 1661 | __param._M_q); |
| 1662 | __ret = _IntType(__x) + __z; |
| 1663 | } |
| 1664 | else |
| 1665 | #endif |
| 1666 | __ret = _M_waiting(__urng, __t, __param._M_q); |
| 1667 | |
| 1668 | if (__p12 != __p) |
| 1669 | __ret = __t - __ret; |
| 1670 | return __ret; |
| 1671 | } |
| 1672 | |
| 1673 | template<typename _IntType> |
| 1674 | template<typename _ForwardIterator, |
| 1675 | typename _UniformRandomNumberGenerator> |
| 1676 | void |
| 1677 | binomial_distribution<_IntType>:: |
| 1678 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1679 | _UniformRandomNumberGenerator& __urng, |
| 1680 | const param_type& __param) |
| 1681 | { |
| 1682 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1683 | // We could duplicate everything from operator()... |
| 1684 | while (__f != __t) |
| 1685 | *__f++ = this->operator()(__urng, __param); |
| 1686 | } |
| 1687 | |
| 1688 | template<typename _IntType, |
| 1689 | typename _CharT, typename _Traits> |
| 1690 | std::basic_ostream<_CharT, _Traits>& |
| 1691 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1692 | const binomial_distribution<_IntType>& __x) |
| 1693 | { |
| 1694 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1695 | |
| 1696 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1697 | const _CharT __fill = __os.fill(); |
| 1698 | const std::streamsize __precision = __os.precision(); |
| 1699 | const _CharT __space = __os.widen(' '); |
| 1700 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1701 | __os.fill(__space); |
| 1702 | __os.precision(std::numeric_limits<double>::max_digits10); |
| 1703 | |
| 1704 | __os << __x.t() << __space << __x.p() |
| 1705 | << __space << __x._M_nd; |
| 1706 | |
| 1707 | __os.flags(__flags); |
| 1708 | __os.fill(__fill); |
| 1709 | __os.precision(__precision); |
| 1710 | return __os; |
| 1711 | } |
| 1712 | |
| 1713 | template<typename _IntType, |
| 1714 | typename _CharT, typename _Traits> |
| 1715 | std::basic_istream<_CharT, _Traits>& |
| 1716 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1717 | binomial_distribution<_IntType>& __x) |
| 1718 | { |
| 1719 | using param_type = typename binomial_distribution<_IntType>::param_type; |
| 1720 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1721 | |
| 1722 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1723 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 1724 | |
| 1725 | _IntType __t; |
| 1726 | double __p; |
| 1727 | if (__is >> __t >> __p >> __x._M_nd) |
| 1728 | __x.param(param_type(__t, __p)); |
| 1729 | |
| 1730 | __is.flags(__flags); |
| 1731 | return __is; |
| 1732 | } |
| 1733 | |
| 1734 | |
| 1735 | template<typename _RealType> |
| 1736 | template<typename _ForwardIterator, |
| 1737 | typename _UniformRandomNumberGenerator> |
| 1738 | void |
| 1739 | std::exponential_distribution<_RealType>:: |
| 1740 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1741 | _UniformRandomNumberGenerator& __urng, |
| 1742 | const param_type& __p) |
| 1743 | { |
| 1744 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1745 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1746 | __aurng(__urng); |
| 1747 | while (__f != __t) |
| 1748 | *__f++ = -std::log(result_type(1) - __aurng()) / __p.lambda(); |
| 1749 | } |
| 1750 | |
| 1751 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1752 | std::basic_ostream<_CharT, _Traits>& |
| 1753 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1754 | const exponential_distribution<_RealType>& __x) |
| 1755 | { |
| 1756 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1757 | |
| 1758 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1759 | const _CharT __fill = __os.fill(); |
| 1760 | const std::streamsize __precision = __os.precision(); |
| 1761 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1762 | __os.fill(__os.widen(' ')); |
| 1763 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1764 | |
| 1765 | __os << __x.lambda(); |
| 1766 | |
| 1767 | __os.flags(__flags); |
| 1768 | __os.fill(__fill); |
| 1769 | __os.precision(__precision); |
| 1770 | return __os; |
| 1771 | } |
| 1772 | |
| 1773 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1774 | std::basic_istream<_CharT, _Traits>& |
| 1775 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1776 | exponential_distribution<_RealType>& __x) |
| 1777 | { |
| 1778 | using param_type |
| 1779 | = typename exponential_distribution<_RealType>::param_type; |
| 1780 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1781 | |
| 1782 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1783 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 1784 | |
| 1785 | _RealType __lambda; |
| 1786 | if (__is >> __lambda) |
| 1787 | __x.param(param_type(__lambda)); |
| 1788 | |
| 1789 | __is.flags(__flags); |
| 1790 | return __is; |
| 1791 | } |
| 1792 | |
| 1793 | |
| 1794 | /** |
| 1795 | * Polar method due to Marsaglia. |
| 1796 | * |
| 1797 | * Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
| 1798 | * New York, 1986, Ch. V, Sect. 4.4. |
| 1799 | */ |
| 1800 | template<typename _RealType> |
| 1801 | template<typename _UniformRandomNumberGenerator> |
| 1802 | typename normal_distribution<_RealType>::result_type |
| 1803 | normal_distribution<_RealType>:: |
| 1804 | operator()(_UniformRandomNumberGenerator& __urng, |
| 1805 | const param_type& __param) |
| 1806 | { |
| 1807 | result_type __ret; |
| 1808 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1809 | __aurng(__urng); |
| 1810 | |
| 1811 | if (_M_saved_available) |
| 1812 | { |
| 1813 | _M_saved_available = false; |
| 1814 | __ret = _M_saved; |
| 1815 | } |
| 1816 | else |
| 1817 | { |
| 1818 | result_type __x, __y, __r2; |
| 1819 | do |
| 1820 | { |
| 1821 | __x = result_type(2.0) * __aurng() - 1.0; |
| 1822 | __y = result_type(2.0) * __aurng() - 1.0; |
| 1823 | __r2 = __x * __x + __y * __y; |
| 1824 | } |
| 1825 | while (__r2 > 1.0 || __r2 == 0.0); |
| 1826 | |
| 1827 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| 1828 | _M_saved = __x * __mult; |
| 1829 | _M_saved_available = true; |
| 1830 | __ret = __y * __mult; |
| 1831 | } |
| 1832 | |
| 1833 | __ret = __ret * __param.stddev() + __param.mean(); |
| 1834 | return __ret; |
| 1835 | } |
| 1836 | |
| 1837 | template<typename _RealType> |
| 1838 | template<typename _ForwardIterator, |
| 1839 | typename _UniformRandomNumberGenerator> |
| 1840 | void |
| 1841 | normal_distribution<_RealType>:: |
| 1842 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1843 | _UniformRandomNumberGenerator& __urng, |
| 1844 | const param_type& __param) |
| 1845 | { |
| 1846 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1847 | |
| 1848 | if (__f == __t) |
| 1849 | return; |
| 1850 | |
| 1851 | if (_M_saved_available) |
| 1852 | { |
| 1853 | _M_saved_available = false; |
| 1854 | *__f++ = _M_saved * __param.stddev() + __param.mean(); |
| 1855 | |
| 1856 | if (__f == __t) |
| 1857 | return; |
| 1858 | } |
| 1859 | |
| 1860 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 1861 | __aurng(__urng); |
| 1862 | |
| 1863 | while (__f + 1 < __t) |
| 1864 | { |
| 1865 | result_type __x, __y, __r2; |
| 1866 | do |
| 1867 | { |
| 1868 | __x = result_type(2.0) * __aurng() - 1.0; |
| 1869 | __y = result_type(2.0) * __aurng() - 1.0; |
| 1870 | __r2 = __x * __x + __y * __y; |
| 1871 | } |
| 1872 | while (__r2 > 1.0 || __r2 == 0.0); |
| 1873 | |
| 1874 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| 1875 | *__f++ = __y * __mult * __param.stddev() + __param.mean(); |
| 1876 | *__f++ = __x * __mult * __param.stddev() + __param.mean(); |
| 1877 | } |
| 1878 | |
| 1879 | if (__f != __t) |
| 1880 | { |
| 1881 | result_type __x, __y, __r2; |
| 1882 | do |
| 1883 | { |
| 1884 | __x = result_type(2.0) * __aurng() - 1.0; |
| 1885 | __y = result_type(2.0) * __aurng() - 1.0; |
| 1886 | __r2 = __x * __x + __y * __y; |
| 1887 | } |
| 1888 | while (__r2 > 1.0 || __r2 == 0.0); |
| 1889 | |
| 1890 | const result_type __mult = std::sqrt(-2 * std::log(__r2) / __r2); |
| 1891 | _M_saved = __x * __mult; |
| 1892 | _M_saved_available = true; |
| 1893 | *__f = __y * __mult * __param.stddev() + __param.mean(); |
| 1894 | } |
| 1895 | } |
| 1896 | |
| 1897 | template<typename _RealType> |
| 1898 | bool |
| 1899 | operator==(const std::normal_distribution<_RealType>& __d1, |
| 1900 | const std::normal_distribution<_RealType>& __d2) |
| 1901 | { |
| 1902 | if (__d1._M_param == __d2._M_param |
| 1903 | && __d1._M_saved_available == __d2._M_saved_available) |
| 1904 | { |
| 1905 | if (__d1._M_saved_available |
| 1906 | && __d1._M_saved == __d2._M_saved) |
| 1907 | return true; |
| 1908 | else if(!__d1._M_saved_available) |
| 1909 | return true; |
| 1910 | else |
| 1911 | return false; |
| 1912 | } |
| 1913 | else |
| 1914 | return false; |
| 1915 | } |
| 1916 | |
| 1917 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1918 | std::basic_ostream<_CharT, _Traits>& |
| 1919 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1920 | const normal_distribution<_RealType>& __x) |
| 1921 | { |
| 1922 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1923 | |
| 1924 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1925 | const _CharT __fill = __os.fill(); |
| 1926 | const std::streamsize __precision = __os.precision(); |
| 1927 | const _CharT __space = __os.widen(' '); |
| 1928 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1929 | __os.fill(__space); |
| 1930 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1931 | |
| 1932 | __os << __x.mean() << __space << __x.stddev() |
| 1933 | << __space << __x._M_saved_available; |
| 1934 | if (__x._M_saved_available) |
| 1935 | __os << __space << __x._M_saved; |
| 1936 | |
| 1937 | __os.flags(__flags); |
| 1938 | __os.fill(__fill); |
| 1939 | __os.precision(__precision); |
| 1940 | return __os; |
| 1941 | } |
| 1942 | |
| 1943 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1944 | std::basic_istream<_CharT, _Traits>& |
| 1945 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 1946 | normal_distribution<_RealType>& __x) |
| 1947 | { |
| 1948 | using param_type = typename normal_distribution<_RealType>::param_type; |
| 1949 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 1950 | |
| 1951 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 1952 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 1953 | |
| 1954 | double __mean, __stddev; |
| 1955 | bool __saved_avail; |
| 1956 | if (__is >> __mean >> __stddev >> __saved_avail) |
| 1957 | { |
| 1958 | if (!__saved_avail || (__is >> __x._M_saved)) |
| 1959 | { |
| 1960 | __x._M_saved_available = __saved_avail; |
| 1961 | __x.param(param_type(__mean, __stddev)); |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | __is.flags(__flags); |
| 1966 | return __is; |
| 1967 | } |
| 1968 | |
| 1969 | |
| 1970 | template<typename _RealType> |
| 1971 | template<typename _ForwardIterator, |
| 1972 | typename _UniformRandomNumberGenerator> |
| 1973 | void |
| 1974 | lognormal_distribution<_RealType>:: |
| 1975 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 1976 | _UniformRandomNumberGenerator& __urng, |
| 1977 | const param_type& __p) |
| 1978 | { |
| 1979 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 1980 | while (__f != __t) |
| 1981 | *__f++ = std::exp(__p.s() * _M_nd(__urng) + __p.m()); |
| 1982 | } |
| 1983 | |
| 1984 | template<typename _RealType, typename _CharT, typename _Traits> |
| 1985 | std::basic_ostream<_CharT, _Traits>& |
| 1986 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 1987 | const lognormal_distribution<_RealType>& __x) |
| 1988 | { |
| 1989 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 1990 | |
| 1991 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 1992 | const _CharT __fill = __os.fill(); |
| 1993 | const std::streamsize __precision = __os.precision(); |
| 1994 | const _CharT __space = __os.widen(' '); |
| 1995 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 1996 | __os.fill(__space); |
| 1997 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 1998 | |
| 1999 | __os << __x.m() << __space << __x.s() |
| 2000 | << __space << __x._M_nd; |
| 2001 | |
| 2002 | __os.flags(__flags); |
| 2003 | __os.fill(__fill); |
| 2004 | __os.precision(__precision); |
| 2005 | return __os; |
| 2006 | } |
| 2007 | |
| 2008 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2009 | std::basic_istream<_CharT, _Traits>& |
| 2010 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2011 | lognormal_distribution<_RealType>& __x) |
| 2012 | { |
| 2013 | using param_type |
| 2014 | = typename lognormal_distribution<_RealType>::param_type; |
| 2015 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2016 | |
| 2017 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2018 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2019 | |
| 2020 | _RealType __m, __s; |
| 2021 | if (__is >> __m >> __s >> __x._M_nd) |
| 2022 | __x.param(param_type(__m, __s)); |
| 2023 | |
| 2024 | __is.flags(__flags); |
| 2025 | return __is; |
| 2026 | } |
| 2027 | |
| 2028 | template<typename _RealType> |
| 2029 | template<typename _ForwardIterator, |
| 2030 | typename _UniformRandomNumberGenerator> |
| 2031 | void |
| 2032 | std::chi_squared_distribution<_RealType>:: |
| 2033 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2034 | _UniformRandomNumberGenerator& __urng) |
| 2035 | { |
| 2036 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2037 | while (__f != __t) |
| 2038 | *__f++ = 2 * _M_gd(__urng); |
| 2039 | } |
| 2040 | |
| 2041 | template<typename _RealType> |
| 2042 | template<typename _ForwardIterator, |
| 2043 | typename _UniformRandomNumberGenerator> |
| 2044 | void |
| 2045 | std::chi_squared_distribution<_RealType>:: |
| 2046 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2047 | _UniformRandomNumberGenerator& __urng, |
| 2048 | const typename |
| 2049 | std::gamma_distribution<result_type>::param_type& __p) |
| 2050 | { |
| 2051 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2052 | while (__f != __t) |
| 2053 | *__f++ = 2 * _M_gd(__urng, __p); |
| 2054 | } |
| 2055 | |
| 2056 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2057 | std::basic_ostream<_CharT, _Traits>& |
| 2058 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2059 | const chi_squared_distribution<_RealType>& __x) |
| 2060 | { |
| 2061 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2062 | |
| 2063 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2064 | const _CharT __fill = __os.fill(); |
| 2065 | const std::streamsize __precision = __os.precision(); |
| 2066 | const _CharT __space = __os.widen(' '); |
| 2067 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2068 | __os.fill(__space); |
| 2069 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2070 | |
| 2071 | __os << __x.n() << __space << __x._M_gd; |
| 2072 | |
| 2073 | __os.flags(__flags); |
| 2074 | __os.fill(__fill); |
| 2075 | __os.precision(__precision); |
| 2076 | return __os; |
| 2077 | } |
| 2078 | |
| 2079 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2080 | std::basic_istream<_CharT, _Traits>& |
| 2081 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2082 | chi_squared_distribution<_RealType>& __x) |
| 2083 | { |
| 2084 | using param_type |
| 2085 | = typename chi_squared_distribution<_RealType>::param_type; |
| 2086 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2087 | |
| 2088 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2089 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2090 | |
| 2091 | _RealType __n; |
| 2092 | if (__is >> __n >> __x._M_gd) |
| 2093 | __x.param(param_type(__n)); |
| 2094 | |
| 2095 | __is.flags(__flags); |
| 2096 | return __is; |
| 2097 | } |
| 2098 | |
| 2099 | |
| 2100 | template<typename _RealType> |
| 2101 | template<typename _UniformRandomNumberGenerator> |
| 2102 | typename cauchy_distribution<_RealType>::result_type |
| 2103 | cauchy_distribution<_RealType>:: |
| 2104 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2105 | const param_type& __p) |
| 2106 | { |
| 2107 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2108 | __aurng(__urng); |
| 2109 | _RealType __u; |
| 2110 | do |
| 2111 | __u = __aurng(); |
| 2112 | while (__u == 0.5); |
| 2113 | |
| 2114 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
| 2115 | return __p.a() + __p.b() * std::tan(__pi * __u); |
| 2116 | } |
| 2117 | |
| 2118 | template<typename _RealType> |
| 2119 | template<typename _ForwardIterator, |
| 2120 | typename _UniformRandomNumberGenerator> |
| 2121 | void |
| 2122 | cauchy_distribution<_RealType>:: |
| 2123 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2124 | _UniformRandomNumberGenerator& __urng, |
| 2125 | const param_type& __p) |
| 2126 | { |
| 2127 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2128 | const _RealType __pi = 3.1415926535897932384626433832795029L; |
| 2129 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2130 | __aurng(__urng); |
| 2131 | while (__f != __t) |
| 2132 | { |
| 2133 | _RealType __u; |
| 2134 | do |
| 2135 | __u = __aurng(); |
| 2136 | while (__u == 0.5); |
| 2137 | |
| 2138 | *__f++ = __p.a() + __p.b() * std::tan(__pi * __u); |
| 2139 | } |
| 2140 | } |
| 2141 | |
| 2142 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2143 | std::basic_ostream<_CharT, _Traits>& |
| 2144 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2145 | const cauchy_distribution<_RealType>& __x) |
| 2146 | { |
| 2147 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2148 | |
| 2149 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2150 | const _CharT __fill = __os.fill(); |
| 2151 | const std::streamsize __precision = __os.precision(); |
| 2152 | const _CharT __space = __os.widen(' '); |
| 2153 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2154 | __os.fill(__space); |
| 2155 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2156 | |
| 2157 | __os << __x.a() << __space << __x.b(); |
| 2158 | |
| 2159 | __os.flags(__flags); |
| 2160 | __os.fill(__fill); |
| 2161 | __os.precision(__precision); |
| 2162 | return __os; |
| 2163 | } |
| 2164 | |
| 2165 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2166 | std::basic_istream<_CharT, _Traits>& |
| 2167 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2168 | cauchy_distribution<_RealType>& __x) |
| 2169 | { |
| 2170 | using param_type = typename cauchy_distribution<_RealType>::param_type; |
| 2171 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2172 | |
| 2173 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2174 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2175 | |
| 2176 | _RealType __a, __b; |
| 2177 | if (__is >> __a >> __b) |
| 2178 | __x.param(param_type(__a, __b)); |
| 2179 | |
| 2180 | __is.flags(__flags); |
| 2181 | return __is; |
| 2182 | } |
| 2183 | |
| 2184 | |
| 2185 | template<typename _RealType> |
| 2186 | template<typename _ForwardIterator, |
| 2187 | typename _UniformRandomNumberGenerator> |
| 2188 | void |
| 2189 | std::fisher_f_distribution<_RealType>:: |
| 2190 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2191 | _UniformRandomNumberGenerator& __urng) |
| 2192 | { |
| 2193 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2194 | while (__f != __t) |
| 2195 | *__f++ = ((_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m())); |
| 2196 | } |
| 2197 | |
| 2198 | template<typename _RealType> |
| 2199 | template<typename _ForwardIterator, |
| 2200 | typename _UniformRandomNumberGenerator> |
| 2201 | void |
| 2202 | std::fisher_f_distribution<_RealType>:: |
| 2203 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2204 | _UniformRandomNumberGenerator& __urng, |
| 2205 | const param_type& __p) |
| 2206 | { |
| 2207 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2208 | typedef typename std::gamma_distribution<result_type>::param_type |
| 2209 | param_type; |
| 2210 | param_type __p1(__p.m() / 2); |
| 2211 | param_type __p2(__p.n() / 2); |
| 2212 | while (__f != __t) |
| 2213 | *__f++ = ((_M_gd_x(__urng, __p1) * n()) |
| 2214 | / (_M_gd_y(__urng, __p2) * m())); |
| 2215 | } |
| 2216 | |
| 2217 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2218 | std::basic_ostream<_CharT, _Traits>& |
| 2219 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2220 | const fisher_f_distribution<_RealType>& __x) |
| 2221 | { |
| 2222 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2223 | |
| 2224 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2225 | const _CharT __fill = __os.fill(); |
| 2226 | const std::streamsize __precision = __os.precision(); |
| 2227 | const _CharT __space = __os.widen(' '); |
| 2228 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2229 | __os.fill(__space); |
| 2230 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2231 | |
| 2232 | __os << __x.m() << __space << __x.n() |
| 2233 | << __space << __x._M_gd_x << __space << __x._M_gd_y; |
| 2234 | |
| 2235 | __os.flags(__flags); |
| 2236 | __os.fill(__fill); |
| 2237 | __os.precision(__precision); |
| 2238 | return __os; |
| 2239 | } |
| 2240 | |
| 2241 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2242 | std::basic_istream<_CharT, _Traits>& |
| 2243 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2244 | fisher_f_distribution<_RealType>& __x) |
| 2245 | { |
| 2246 | using param_type |
| 2247 | = typename fisher_f_distribution<_RealType>::param_type; |
| 2248 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2249 | |
| 2250 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2251 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2252 | |
| 2253 | _RealType __m, __n; |
| 2254 | if (__is >> __m >> __n >> __x._M_gd_x >> __x._M_gd_y) |
| 2255 | __x.param(param_type(__m, __n)); |
| 2256 | |
| 2257 | __is.flags(__flags); |
| 2258 | return __is; |
| 2259 | } |
| 2260 | |
| 2261 | |
| 2262 | template<typename _RealType> |
| 2263 | template<typename _ForwardIterator, |
| 2264 | typename _UniformRandomNumberGenerator> |
| 2265 | void |
| 2266 | std::student_t_distribution<_RealType>:: |
| 2267 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2268 | _UniformRandomNumberGenerator& __urng) |
| 2269 | { |
| 2270 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2271 | while (__f != __t) |
| 2272 | *__f++ = _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); |
| 2273 | } |
| 2274 | |
| 2275 | template<typename _RealType> |
| 2276 | template<typename _ForwardIterator, |
| 2277 | typename _UniformRandomNumberGenerator> |
| 2278 | void |
| 2279 | std::student_t_distribution<_RealType>:: |
| 2280 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2281 | _UniformRandomNumberGenerator& __urng, |
| 2282 | const param_type& __p) |
| 2283 | { |
| 2284 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2285 | typename std::gamma_distribution<result_type>::param_type |
| 2286 | __p2(__p.n() / 2, 2); |
| 2287 | while (__f != __t) |
| 2288 | *__f++ = _M_nd(__urng) * std::sqrt(__p.n() / _M_gd(__urng, __p2)); |
| 2289 | } |
| 2290 | |
| 2291 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2292 | std::basic_ostream<_CharT, _Traits>& |
| 2293 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2294 | const student_t_distribution<_RealType>& __x) |
| 2295 | { |
| 2296 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2297 | |
| 2298 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2299 | const _CharT __fill = __os.fill(); |
| 2300 | const std::streamsize __precision = __os.precision(); |
| 2301 | const _CharT __space = __os.widen(' '); |
| 2302 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2303 | __os.fill(__space); |
| 2304 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2305 | |
| 2306 | __os << __x.n() << __space << __x._M_nd << __space << __x._M_gd; |
| 2307 | |
| 2308 | __os.flags(__flags); |
| 2309 | __os.fill(__fill); |
| 2310 | __os.precision(__precision); |
| 2311 | return __os; |
| 2312 | } |
| 2313 | |
| 2314 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2315 | std::basic_istream<_CharT, _Traits>& |
| 2316 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2317 | student_t_distribution<_RealType>& __x) |
| 2318 | { |
| 2319 | using param_type |
| 2320 | = typename student_t_distribution<_RealType>::param_type; |
| 2321 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2322 | |
| 2323 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2324 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2325 | |
| 2326 | _RealType __n; |
| 2327 | if (__is >> __n >> __x._M_nd >> __x._M_gd) |
| 2328 | __x.param(param_type(__n)); |
| 2329 | |
| 2330 | __is.flags(__flags); |
| 2331 | return __is; |
| 2332 | } |
| 2333 | |
| 2334 | |
| 2335 | template<typename _RealType> |
| 2336 | void |
| 2337 | gamma_distribution<_RealType>::param_type:: |
| 2338 | _M_initialize() |
| 2339 | { |
| 2340 | _M_malpha = _M_alpha < 1.0 ? _M_alpha + _RealType(1.0) : _M_alpha; |
| 2341 | |
| 2342 | const _RealType __a1 = _M_malpha - _RealType(1.0) / _RealType(3.0); |
| 2343 | _M_a2 = _RealType(1.0) / std::sqrt(_RealType(9.0) * __a1); |
| 2344 | } |
| 2345 | |
| 2346 | /** |
| 2347 | * Marsaglia, G. and Tsang, W. W. |
| 2348 | * "A Simple Method for Generating Gamma Variables" |
| 2349 | * ACM Transactions on Mathematical Software, 26, 3, 363-372, 2000. |
| 2350 | */ |
| 2351 | template<typename _RealType> |
| 2352 | template<typename _UniformRandomNumberGenerator> |
| 2353 | typename gamma_distribution<_RealType>::result_type |
| 2354 | gamma_distribution<_RealType>:: |
| 2355 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2356 | const param_type& __param) |
| 2357 | { |
| 2358 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2359 | __aurng(__urng); |
| 2360 | |
| 2361 | result_type __u, __v, __n; |
| 2362 | const result_type __a1 = (__param._M_malpha |
| 2363 | - _RealType(1.0) / _RealType(3.0)); |
| 2364 | |
| 2365 | do |
| 2366 | { |
| 2367 | do |
| 2368 | { |
| 2369 | __n = _M_nd(__urng); |
| 2370 | __v = result_type(1.0) + __param._M_a2 * __n; |
| 2371 | } |
| 2372 | while (__v <= 0.0); |
| 2373 | |
| 2374 | __v = __v * __v * __v; |
| 2375 | __u = __aurng(); |
| 2376 | } |
| 2377 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| 2378 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
| 2379 | * (1.0 - __v + std::log(__v))))); |
| 2380 | |
| 2381 | if (__param.alpha() == __param._M_malpha) |
| 2382 | return __a1 * __v * __param.beta(); |
| 2383 | else |
| 2384 | { |
| 2385 | do |
| 2386 | __u = __aurng(); |
| 2387 | while (__u == 0.0); |
| 2388 | |
| 2389 | return (std::pow(__u, result_type(1.0) / __param.alpha()) |
| 2390 | * __a1 * __v * __param.beta()); |
| 2391 | } |
| 2392 | } |
| 2393 | |
| 2394 | template<typename _RealType> |
| 2395 | template<typename _ForwardIterator, |
| 2396 | typename _UniformRandomNumberGenerator> |
| 2397 | void |
| 2398 | gamma_distribution<_RealType>:: |
| 2399 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2400 | _UniformRandomNumberGenerator& __urng, |
| 2401 | const param_type& __param) |
| 2402 | { |
| 2403 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2404 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2405 | __aurng(__urng); |
| 2406 | |
| 2407 | result_type __u, __v, __n; |
| 2408 | const result_type __a1 = (__param._M_malpha |
| 2409 | - _RealType(1.0) / _RealType(3.0)); |
| 2410 | |
| 2411 | if (__param.alpha() == __param._M_malpha) |
| 2412 | while (__f != __t) |
| 2413 | { |
| 2414 | do |
| 2415 | { |
| 2416 | do |
| 2417 | { |
| 2418 | __n = _M_nd(__urng); |
| 2419 | __v = result_type(1.0) + __param._M_a2 * __n; |
| 2420 | } |
| 2421 | while (__v <= 0.0); |
| 2422 | |
| 2423 | __v = __v * __v * __v; |
| 2424 | __u = __aurng(); |
| 2425 | } |
| 2426 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| 2427 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
| 2428 | * (1.0 - __v + std::log(__v))))); |
| 2429 | |
| 2430 | *__f++ = __a1 * __v * __param.beta(); |
| 2431 | } |
| 2432 | else |
| 2433 | while (__f != __t) |
| 2434 | { |
| 2435 | do |
| 2436 | { |
| 2437 | do |
| 2438 | { |
| 2439 | __n = _M_nd(__urng); |
| 2440 | __v = result_type(1.0) + __param._M_a2 * __n; |
| 2441 | } |
| 2442 | while (__v <= 0.0); |
| 2443 | |
| 2444 | __v = __v * __v * __v; |
| 2445 | __u = __aurng(); |
| 2446 | } |
| 2447 | while (__u > result_type(1.0) - 0.0331 * __n * __n * __n * __n |
| 2448 | && (std::log(__u) > (0.5 * __n * __n + __a1 |
| 2449 | * (1.0 - __v + std::log(__v))))); |
| 2450 | |
| 2451 | do |
| 2452 | __u = __aurng(); |
| 2453 | while (__u == 0.0); |
| 2454 | |
| 2455 | *__f++ = (std::pow(__u, result_type(1.0) / __param.alpha()) |
| 2456 | * __a1 * __v * __param.beta()); |
| 2457 | } |
| 2458 | } |
| 2459 | |
| 2460 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2461 | std::basic_ostream<_CharT, _Traits>& |
| 2462 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2463 | const gamma_distribution<_RealType>& __x) |
| 2464 | { |
| 2465 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2466 | |
| 2467 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2468 | const _CharT __fill = __os.fill(); |
| 2469 | const std::streamsize __precision = __os.precision(); |
| 2470 | const _CharT __space = __os.widen(' '); |
| 2471 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2472 | __os.fill(__space); |
| 2473 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2474 | |
| 2475 | __os << __x.alpha() << __space << __x.beta() |
| 2476 | << __space << __x._M_nd; |
| 2477 | |
| 2478 | __os.flags(__flags); |
| 2479 | __os.fill(__fill); |
| 2480 | __os.precision(__precision); |
| 2481 | return __os; |
| 2482 | } |
| 2483 | |
| 2484 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2485 | std::basic_istream<_CharT, _Traits>& |
| 2486 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2487 | gamma_distribution<_RealType>& __x) |
| 2488 | { |
| 2489 | using param_type = typename gamma_distribution<_RealType>::param_type; |
| 2490 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2491 | |
| 2492 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2493 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2494 | |
| 2495 | _RealType __alpha_val, __beta_val; |
| 2496 | if (__is >> __alpha_val >> __beta_val >> __x._M_nd) |
| 2497 | __x.param(param_type(__alpha_val, __beta_val)); |
| 2498 | |
| 2499 | __is.flags(__flags); |
| 2500 | return __is; |
| 2501 | } |
| 2502 | |
| 2503 | |
| 2504 | template<typename _RealType> |
| 2505 | template<typename _UniformRandomNumberGenerator> |
| 2506 | typename weibull_distribution<_RealType>::result_type |
| 2507 | weibull_distribution<_RealType>:: |
| 2508 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2509 | const param_type& __p) |
| 2510 | { |
| 2511 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2512 | __aurng(__urng); |
| 2513 | return __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
| 2514 | result_type(1) / __p.a()); |
| 2515 | } |
| 2516 | |
| 2517 | template<typename _RealType> |
| 2518 | template<typename _ForwardIterator, |
| 2519 | typename _UniformRandomNumberGenerator> |
| 2520 | void |
| 2521 | weibull_distribution<_RealType>:: |
| 2522 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2523 | _UniformRandomNumberGenerator& __urng, |
| 2524 | const param_type& __p) |
| 2525 | { |
| 2526 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2527 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2528 | __aurng(__urng); |
| 2529 | auto __inv_a = result_type(1) / __p.a(); |
| 2530 | |
| 2531 | while (__f != __t) |
| 2532 | *__f++ = __p.b() * std::pow(-std::log(result_type(1) - __aurng()), |
| 2533 | __inv_a); |
| 2534 | } |
| 2535 | |
| 2536 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2537 | std::basic_ostream<_CharT, _Traits>& |
| 2538 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2539 | const weibull_distribution<_RealType>& __x) |
| 2540 | { |
| 2541 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2542 | |
| 2543 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2544 | const _CharT __fill = __os.fill(); |
| 2545 | const std::streamsize __precision = __os.precision(); |
| 2546 | const _CharT __space = __os.widen(' '); |
| 2547 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2548 | __os.fill(__space); |
| 2549 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2550 | |
| 2551 | __os << __x.a() << __space << __x.b(); |
| 2552 | |
| 2553 | __os.flags(__flags); |
| 2554 | __os.fill(__fill); |
| 2555 | __os.precision(__precision); |
| 2556 | return __os; |
| 2557 | } |
| 2558 | |
| 2559 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2560 | std::basic_istream<_CharT, _Traits>& |
| 2561 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2562 | weibull_distribution<_RealType>& __x) |
| 2563 | { |
| 2564 | using param_type = typename weibull_distribution<_RealType>::param_type; |
| 2565 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2566 | |
| 2567 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2568 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2569 | |
| 2570 | _RealType __a, __b; |
| 2571 | if (__is >> __a >> __b) |
| 2572 | __x.param(param_type(__a, __b)); |
| 2573 | |
| 2574 | __is.flags(__flags); |
| 2575 | return __is; |
| 2576 | } |
| 2577 | |
| 2578 | |
| 2579 | template<typename _RealType> |
| 2580 | template<typename _UniformRandomNumberGenerator> |
| 2581 | typename extreme_value_distribution<_RealType>::result_type |
| 2582 | extreme_value_distribution<_RealType>:: |
| 2583 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2584 | const param_type& __p) |
| 2585 | { |
| 2586 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2587 | __aurng(__urng); |
| 2588 | return __p.a() - __p.b() * std::log(-std::log(result_type(1) |
| 2589 | - __aurng())); |
| 2590 | } |
| 2591 | |
| 2592 | template<typename _RealType> |
| 2593 | template<typename _ForwardIterator, |
| 2594 | typename _UniformRandomNumberGenerator> |
| 2595 | void |
| 2596 | extreme_value_distribution<_RealType>:: |
| 2597 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2598 | _UniformRandomNumberGenerator& __urng, |
| 2599 | const param_type& __p) |
| 2600 | { |
| 2601 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2602 | __detail::_Adaptor<_UniformRandomNumberGenerator, result_type> |
| 2603 | __aurng(__urng); |
| 2604 | |
| 2605 | while (__f != __t) |
| 2606 | *__f++ = __p.a() - __p.b() * std::log(-std::log(result_type(1) |
| 2607 | - __aurng())); |
| 2608 | } |
| 2609 | |
| 2610 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2611 | std::basic_ostream<_CharT, _Traits>& |
| 2612 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2613 | const extreme_value_distribution<_RealType>& __x) |
| 2614 | { |
| 2615 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2616 | |
| 2617 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2618 | const _CharT __fill = __os.fill(); |
| 2619 | const std::streamsize __precision = __os.precision(); |
| 2620 | const _CharT __space = __os.widen(' '); |
| 2621 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2622 | __os.fill(__space); |
| 2623 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2624 | |
| 2625 | __os << __x.a() << __space << __x.b(); |
| 2626 | |
| 2627 | __os.flags(__flags); |
| 2628 | __os.fill(__fill); |
| 2629 | __os.precision(__precision); |
| 2630 | return __os; |
| 2631 | } |
| 2632 | |
| 2633 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2634 | std::basic_istream<_CharT, _Traits>& |
| 2635 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2636 | extreme_value_distribution<_RealType>& __x) |
| 2637 | { |
| 2638 | using param_type |
| 2639 | = typename extreme_value_distribution<_RealType>::param_type; |
| 2640 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2641 | |
| 2642 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2643 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2644 | |
| 2645 | _RealType __a, __b; |
| 2646 | if (__is >> __a >> __b) |
| 2647 | __x.param(param_type(__a, __b)); |
| 2648 | |
| 2649 | __is.flags(__flags); |
| 2650 | return __is; |
| 2651 | } |
| 2652 | |
| 2653 | |
| 2654 | template<typename _IntType> |
| 2655 | void |
| 2656 | discrete_distribution<_IntType>::param_type:: |
| 2657 | _M_initialize() |
| 2658 | { |
| 2659 | if (_M_prob.size() < 2) |
| 2660 | { |
| 2661 | _M_prob.clear(); |
| 2662 | return; |
| 2663 | } |
| 2664 | |
| 2665 | const double __sum = std::accumulate(first: _M_prob.begin(), |
| 2666 | last: _M_prob.end(), init: 0.0); |
| 2667 | __glibcxx_assert(__sum > 0); |
| 2668 | // Now normalize the probabilites. |
| 2669 | __detail::__normalize(first: _M_prob.begin(), last: _M_prob.end(), result: _M_prob.begin(), |
| 2670 | factor: __sum); |
| 2671 | // Accumulate partial sums. |
| 2672 | _M_cp.reserve(n: _M_prob.size()); |
| 2673 | std::partial_sum(first: _M_prob.begin(), last: _M_prob.end(), |
| 2674 | result: std::back_inserter(x&: _M_cp)); |
| 2675 | // Make sure the last cumulative probability is one. |
| 2676 | _M_cp[_M_cp.size() - 1] = 1.0; |
| 2677 | } |
| 2678 | |
| 2679 | template<typename _IntType> |
| 2680 | template<typename _Func> |
| 2681 | discrete_distribution<_IntType>::param_type:: |
| 2682 | param_type(size_t __nw, double __xmin, double __xmax, _Func __fw) |
| 2683 | : _M_prob(), _M_cp() |
| 2684 | { |
| 2685 | const size_t __n = __nw == 0 ? 1 : __nw; |
| 2686 | const double __delta = (__xmax - __xmin) / __n; |
| 2687 | |
| 2688 | _M_prob.reserve(__n); |
| 2689 | for (size_t __k = 0; __k < __nw; ++__k) |
| 2690 | _M_prob.push_back(__fw(__xmin + __k * __delta + 0.5 * __delta)); |
| 2691 | |
| 2692 | _M_initialize(); |
| 2693 | } |
| 2694 | |
| 2695 | template<typename _IntType> |
| 2696 | template<typename _UniformRandomNumberGenerator> |
| 2697 | typename discrete_distribution<_IntType>::result_type |
| 2698 | discrete_distribution<_IntType>:: |
| 2699 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2700 | const param_type& __param) |
| 2701 | { |
| 2702 | if (__param._M_cp.empty()) |
| 2703 | return result_type(0); |
| 2704 | |
| 2705 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2706 | __aurng(__urng); |
| 2707 | |
| 2708 | const double __p = __aurng(); |
| 2709 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2710 | __param._M_cp.end(), __p); |
| 2711 | |
| 2712 | return __pos - __param._M_cp.begin(); |
| 2713 | } |
| 2714 | |
| 2715 | template<typename _IntType> |
| 2716 | template<typename _ForwardIterator, |
| 2717 | typename _UniformRandomNumberGenerator> |
| 2718 | void |
| 2719 | discrete_distribution<_IntType>:: |
| 2720 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2721 | _UniformRandomNumberGenerator& __urng, |
| 2722 | const param_type& __param) |
| 2723 | { |
| 2724 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2725 | |
| 2726 | if (__param._M_cp.empty()) |
| 2727 | { |
| 2728 | while (__f != __t) |
| 2729 | *__f++ = result_type(0); |
| 2730 | return; |
| 2731 | } |
| 2732 | |
| 2733 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2734 | __aurng(__urng); |
| 2735 | |
| 2736 | while (__f != __t) |
| 2737 | { |
| 2738 | const double __p = __aurng(); |
| 2739 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2740 | __param._M_cp.end(), __p); |
| 2741 | |
| 2742 | *__f++ = __pos - __param._M_cp.begin(); |
| 2743 | } |
| 2744 | } |
| 2745 | |
| 2746 | template<typename _IntType, typename _CharT, typename _Traits> |
| 2747 | std::basic_ostream<_CharT, _Traits>& |
| 2748 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2749 | const discrete_distribution<_IntType>& __x) |
| 2750 | { |
| 2751 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2752 | |
| 2753 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2754 | const _CharT __fill = __os.fill(); |
| 2755 | const std::streamsize __precision = __os.precision(); |
| 2756 | const _CharT __space = __os.widen(' '); |
| 2757 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2758 | __os.fill(__space); |
| 2759 | __os.precision(std::numeric_limits<double>::max_digits10); |
| 2760 | |
| 2761 | std::vector<double> __prob = __x.probabilities(); |
| 2762 | __os << __prob.size(); |
| 2763 | for (auto __dit = __prob.begin(); __dit != __prob.end(); ++__dit) |
| 2764 | __os << __space << *__dit; |
| 2765 | |
| 2766 | __os.flags(__flags); |
| 2767 | __os.fill(__fill); |
| 2768 | __os.precision(__precision); |
| 2769 | return __os; |
| 2770 | } |
| 2771 | |
| 2772 | namespace __detail |
| 2773 | { |
| 2774 | template<typename _ValT, typename _CharT, typename _Traits> |
| 2775 | basic_istream<_CharT, _Traits>& |
| 2776 | (basic_istream<_CharT, _Traits>& __is, |
| 2777 | vector<_ValT>& __vals, size_t __n) |
| 2778 | { |
| 2779 | __vals.reserve(__n); |
| 2780 | while (__n--) |
| 2781 | { |
| 2782 | _ValT __val; |
| 2783 | if (__is >> __val) |
| 2784 | __vals.push_back(__val); |
| 2785 | else |
| 2786 | break; |
| 2787 | } |
| 2788 | return __is; |
| 2789 | } |
| 2790 | } // namespace __detail |
| 2791 | |
| 2792 | template<typename _IntType, typename _CharT, typename _Traits> |
| 2793 | std::basic_istream<_CharT, _Traits>& |
| 2794 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 2795 | discrete_distribution<_IntType>& __x) |
| 2796 | { |
| 2797 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 2798 | |
| 2799 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 2800 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 2801 | |
| 2802 | size_t __n; |
| 2803 | if (__is >> __n) |
| 2804 | { |
| 2805 | std::vector<double> __prob_vec; |
| 2806 | if (__detail::__extract_params(__is, __prob_vec, __n)) |
| 2807 | __x.param({__prob_vec.begin(), __prob_vec.end()}); |
| 2808 | } |
| 2809 | |
| 2810 | __is.flags(__flags); |
| 2811 | return __is; |
| 2812 | } |
| 2813 | |
| 2814 | |
| 2815 | template<typename _RealType> |
| 2816 | void |
| 2817 | piecewise_constant_distribution<_RealType>::param_type:: |
| 2818 | _M_initialize() |
| 2819 | { |
| 2820 | if (_M_int.size() < 2 |
| 2821 | || (_M_int.size() == 2 |
| 2822 | && _M_int[0] == _RealType(0) |
| 2823 | && _M_int[1] == _RealType(1))) |
| 2824 | { |
| 2825 | _M_int.clear(); |
| 2826 | _M_den.clear(); |
| 2827 | return; |
| 2828 | } |
| 2829 | |
| 2830 | const double __sum = std::accumulate(first: _M_den.begin(), |
| 2831 | last: _M_den.end(), init: 0.0); |
| 2832 | __glibcxx_assert(__sum > 0); |
| 2833 | |
| 2834 | __detail::__normalize(first: _M_den.begin(), last: _M_den.end(), result: _M_den.begin(), |
| 2835 | factor: __sum); |
| 2836 | |
| 2837 | _M_cp.reserve(n: _M_den.size()); |
| 2838 | std::partial_sum(first: _M_den.begin(), last: _M_den.end(), |
| 2839 | result: std::back_inserter(x&: _M_cp)); |
| 2840 | |
| 2841 | // Make sure the last cumulative probability is one. |
| 2842 | _M_cp[_M_cp.size() - 1] = 1.0; |
| 2843 | |
| 2844 | for (size_t __k = 0; __k < _M_den.size(); ++__k) |
| 2845 | _M_den[__k] /= _M_int[__k + 1] - _M_int[__k]; |
| 2846 | } |
| 2847 | |
| 2848 | template<typename _RealType> |
| 2849 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 2850 | piecewise_constant_distribution<_RealType>::param_type:: |
| 2851 | param_type(_InputIteratorB __bbegin, |
| 2852 | _InputIteratorB __bend, |
| 2853 | _InputIteratorW __wbegin) |
| 2854 | : _M_int(), _M_den(), _M_cp() |
| 2855 | { |
| 2856 | if (__bbegin != __bend) |
| 2857 | { |
| 2858 | for (;;) |
| 2859 | { |
| 2860 | _M_int.push_back(*__bbegin); |
| 2861 | ++__bbegin; |
| 2862 | if (__bbegin == __bend) |
| 2863 | break; |
| 2864 | |
| 2865 | _M_den.push_back(*__wbegin); |
| 2866 | ++__wbegin; |
| 2867 | } |
| 2868 | } |
| 2869 | |
| 2870 | _M_initialize(); |
| 2871 | } |
| 2872 | |
| 2873 | template<typename _RealType> |
| 2874 | template<typename _Func> |
| 2875 | piecewise_constant_distribution<_RealType>::param_type:: |
| 2876 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
| 2877 | : _M_int(), _M_den(), _M_cp() |
| 2878 | { |
| 2879 | _M_int.reserve(__bl.size()); |
| 2880 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
| 2881 | _M_int.push_back(*__biter); |
| 2882 | |
| 2883 | _M_den.reserve(n: _M_int.size() - 1); |
| 2884 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
| 2885 | _M_den.push_back(__fw(0.5 * (_M_int[__k + 1] + _M_int[__k]))); |
| 2886 | |
| 2887 | _M_initialize(); |
| 2888 | } |
| 2889 | |
| 2890 | template<typename _RealType> |
| 2891 | template<typename _Func> |
| 2892 | piecewise_constant_distribution<_RealType>::param_type:: |
| 2893 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
| 2894 | : _M_int(), _M_den(), _M_cp() |
| 2895 | { |
| 2896 | const size_t __n = __nw == 0 ? 1 : __nw; |
| 2897 | const _RealType __delta = (__xmax - __xmin) / __n; |
| 2898 | |
| 2899 | _M_int.reserve(__n + 1); |
| 2900 | for (size_t __k = 0; __k <= __nw; ++__k) |
| 2901 | _M_int.push_back(__xmin + __k * __delta); |
| 2902 | |
| 2903 | _M_den.reserve(__n); |
| 2904 | for (size_t __k = 0; __k < __nw; ++__k) |
| 2905 | _M_den.push_back(__fw(_M_int[__k] + 0.5 * __delta)); |
| 2906 | |
| 2907 | _M_initialize(); |
| 2908 | } |
| 2909 | |
| 2910 | template<typename _RealType> |
| 2911 | template<typename _UniformRandomNumberGenerator> |
| 2912 | typename piecewise_constant_distribution<_RealType>::result_type |
| 2913 | piecewise_constant_distribution<_RealType>:: |
| 2914 | operator()(_UniformRandomNumberGenerator& __urng, |
| 2915 | const param_type& __param) |
| 2916 | { |
| 2917 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2918 | __aurng(__urng); |
| 2919 | |
| 2920 | const double __p = __aurng(); |
| 2921 | if (__param._M_cp.empty()) |
| 2922 | return __p; |
| 2923 | |
| 2924 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2925 | __param._M_cp.end(), __p); |
| 2926 | const size_t __i = __pos - __param._M_cp.begin(); |
| 2927 | |
| 2928 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| 2929 | |
| 2930 | return __param._M_int[__i] + (__p - __pref) / __param._M_den[__i]; |
| 2931 | } |
| 2932 | |
| 2933 | template<typename _RealType> |
| 2934 | template<typename _ForwardIterator, |
| 2935 | typename _UniformRandomNumberGenerator> |
| 2936 | void |
| 2937 | piecewise_constant_distribution<_RealType>:: |
| 2938 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 2939 | _UniformRandomNumberGenerator& __urng, |
| 2940 | const param_type& __param) |
| 2941 | { |
| 2942 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 2943 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 2944 | __aurng(__urng); |
| 2945 | |
| 2946 | if (__param._M_cp.empty()) |
| 2947 | { |
| 2948 | while (__f != __t) |
| 2949 | *__f++ = __aurng(); |
| 2950 | return; |
| 2951 | } |
| 2952 | |
| 2953 | while (__f != __t) |
| 2954 | { |
| 2955 | const double __p = __aurng(); |
| 2956 | |
| 2957 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 2958 | __param._M_cp.end(), __p); |
| 2959 | const size_t __i = __pos - __param._M_cp.begin(); |
| 2960 | |
| 2961 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| 2962 | |
| 2963 | *__f++ = (__param._M_int[__i] |
| 2964 | + (__p - __pref) / __param._M_den[__i]); |
| 2965 | } |
| 2966 | } |
| 2967 | |
| 2968 | template<typename _RealType, typename _CharT, typename _Traits> |
| 2969 | std::basic_ostream<_CharT, _Traits>& |
| 2970 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 2971 | const piecewise_constant_distribution<_RealType>& __x) |
| 2972 | { |
| 2973 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 2974 | |
| 2975 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 2976 | const _CharT __fill = __os.fill(); |
| 2977 | const std::streamsize __precision = __os.precision(); |
| 2978 | const _CharT __space = __os.widen(' '); |
| 2979 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 2980 | __os.fill(__space); |
| 2981 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 2982 | |
| 2983 | std::vector<_RealType> __int = __x.intervals(); |
| 2984 | __os << __int.size() - 1; |
| 2985 | |
| 2986 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
| 2987 | __os << __space << *__xit; |
| 2988 | |
| 2989 | std::vector<double> __den = __x.densities(); |
| 2990 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
| 2991 | __os << __space << *__dit; |
| 2992 | |
| 2993 | __os.flags(__flags); |
| 2994 | __os.fill(__fill); |
| 2995 | __os.precision(__precision); |
| 2996 | return __os; |
| 2997 | } |
| 2998 | |
| 2999 | template<typename _RealType, typename _CharT, typename _Traits> |
| 3000 | std::basic_istream<_CharT, _Traits>& |
| 3001 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3002 | piecewise_constant_distribution<_RealType>& __x) |
| 3003 | { |
| 3004 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 3005 | |
| 3006 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 3007 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 3008 | |
| 3009 | size_t __n; |
| 3010 | if (__is >> __n) |
| 3011 | { |
| 3012 | std::vector<_RealType> __int_vec; |
| 3013 | if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
| 3014 | { |
| 3015 | std::vector<double> __den_vec; |
| 3016 | if (__detail::__extract_params(__is, __den_vec, __n)) |
| 3017 | { |
| 3018 | __x.param({ __int_vec.begin(), __int_vec.end(), |
| 3019 | __den_vec.begin() }); |
| 3020 | } |
| 3021 | } |
| 3022 | } |
| 3023 | |
| 3024 | __is.flags(__flags); |
| 3025 | return __is; |
| 3026 | } |
| 3027 | |
| 3028 | |
| 3029 | template<typename _RealType> |
| 3030 | void |
| 3031 | piecewise_linear_distribution<_RealType>::param_type:: |
| 3032 | _M_initialize() |
| 3033 | { |
| 3034 | if (_M_int.size() < 2 |
| 3035 | || (_M_int.size() == 2 |
| 3036 | && _M_int[0] == _RealType(0) |
| 3037 | && _M_int[1] == _RealType(1) |
| 3038 | && _M_den[0] == _M_den[1])) |
| 3039 | { |
| 3040 | _M_int.clear(); |
| 3041 | _M_den.clear(); |
| 3042 | return; |
| 3043 | } |
| 3044 | |
| 3045 | double __sum = 0.0; |
| 3046 | _M_cp.reserve(n: _M_int.size() - 1); |
| 3047 | _M_m.reserve(n: _M_int.size() - 1); |
| 3048 | for (size_t __k = 0; __k < _M_int.size() - 1; ++__k) |
| 3049 | { |
| 3050 | const _RealType __delta = _M_int[__k + 1] - _M_int[__k]; |
| 3051 | __sum += 0.5 * (_M_den[__k + 1] + _M_den[__k]) * __delta; |
| 3052 | _M_cp.push_back(x: __sum); |
| 3053 | _M_m.push_back((_M_den[__k + 1] - _M_den[__k]) / __delta); |
| 3054 | } |
| 3055 | __glibcxx_assert(__sum > 0); |
| 3056 | |
| 3057 | // Now normalize the densities... |
| 3058 | __detail::__normalize(first: _M_den.begin(), last: _M_den.end(), result: _M_den.begin(), |
| 3059 | factor: __sum); |
| 3060 | // ... and partial sums... |
| 3061 | __detail::__normalize(first: _M_cp.begin(), last: _M_cp.end(), result: _M_cp.begin(), factor: __sum); |
| 3062 | // ... and slopes. |
| 3063 | __detail::__normalize(first: _M_m.begin(), last: _M_m.end(), result: _M_m.begin(), factor: __sum); |
| 3064 | |
| 3065 | // Make sure the last cumulative probablility is one. |
| 3066 | _M_cp[_M_cp.size() - 1] = 1.0; |
| 3067 | } |
| 3068 | |
| 3069 | template<typename _RealType> |
| 3070 | template<typename _InputIteratorB, typename _InputIteratorW> |
| 3071 | piecewise_linear_distribution<_RealType>::param_type:: |
| 3072 | param_type(_InputIteratorB __bbegin, |
| 3073 | _InputIteratorB __bend, |
| 3074 | _InputIteratorW __wbegin) |
| 3075 | : _M_int(), _M_den(), _M_cp(), _M_m() |
| 3076 | { |
| 3077 | for (; __bbegin != __bend; ++__bbegin, ++__wbegin) |
| 3078 | { |
| 3079 | _M_int.push_back(*__bbegin); |
| 3080 | _M_den.push_back(*__wbegin); |
| 3081 | } |
| 3082 | |
| 3083 | _M_initialize(); |
| 3084 | } |
| 3085 | |
| 3086 | template<typename _RealType> |
| 3087 | template<typename _Func> |
| 3088 | piecewise_linear_distribution<_RealType>::param_type:: |
| 3089 | param_type(initializer_list<_RealType> __bl, _Func __fw) |
| 3090 | : _M_int(), _M_den(), _M_cp(), _M_m() |
| 3091 | { |
| 3092 | _M_int.reserve(__bl.size()); |
| 3093 | _M_den.reserve(n: __bl.size()); |
| 3094 | for (auto __biter = __bl.begin(); __biter != __bl.end(); ++__biter) |
| 3095 | { |
| 3096 | _M_int.push_back(*__biter); |
| 3097 | _M_den.push_back(__fw(*__biter)); |
| 3098 | } |
| 3099 | |
| 3100 | _M_initialize(); |
| 3101 | } |
| 3102 | |
| 3103 | template<typename _RealType> |
| 3104 | template<typename _Func> |
| 3105 | piecewise_linear_distribution<_RealType>::param_type:: |
| 3106 | param_type(size_t __nw, _RealType __xmin, _RealType __xmax, _Func __fw) |
| 3107 | : _M_int(), _M_den(), _M_cp(), _M_m() |
| 3108 | { |
| 3109 | const size_t __n = __nw == 0 ? 1 : __nw; |
| 3110 | const _RealType __delta = (__xmax - __xmin) / __n; |
| 3111 | |
| 3112 | _M_int.reserve(__n + 1); |
| 3113 | _M_den.reserve(n: __n + 1); |
| 3114 | for (size_t __k = 0; __k <= __nw; ++__k) |
| 3115 | { |
| 3116 | _M_int.push_back(__xmin + __k * __delta); |
| 3117 | _M_den.push_back(__fw(_M_int[__k] + __delta)); |
| 3118 | } |
| 3119 | |
| 3120 | _M_initialize(); |
| 3121 | } |
| 3122 | |
| 3123 | template<typename _RealType> |
| 3124 | template<typename _UniformRandomNumberGenerator> |
| 3125 | typename piecewise_linear_distribution<_RealType>::result_type |
| 3126 | piecewise_linear_distribution<_RealType>:: |
| 3127 | operator()(_UniformRandomNumberGenerator& __urng, |
| 3128 | const param_type& __param) |
| 3129 | { |
| 3130 | __detail::_Adaptor<_UniformRandomNumberGenerator, double> |
| 3131 | __aurng(__urng); |
| 3132 | |
| 3133 | const double __p = __aurng(); |
| 3134 | if (__param._M_cp.empty()) |
| 3135 | return __p; |
| 3136 | |
| 3137 | auto __pos = std::lower_bound(__param._M_cp.begin(), |
| 3138 | __param._M_cp.end(), __p); |
| 3139 | const size_t __i = __pos - __param._M_cp.begin(); |
| 3140 | |
| 3141 | const double __pref = __i > 0 ? __param._M_cp[__i - 1] : 0.0; |
| 3142 | |
| 3143 | const double __a = 0.5 * __param._M_m[__i]; |
| 3144 | const double __b = __param._M_den[__i]; |
| 3145 | const double __cm = __p - __pref; |
| 3146 | |
| 3147 | _RealType __x = __param._M_int[__i]; |
| 3148 | if (__a == 0) |
| 3149 | __x += __cm / __b; |
| 3150 | else |
| 3151 | { |
| 3152 | const double __d = __b * __b + 4.0 * __a * __cm; |
| 3153 | __x += 0.5 * (std::sqrt(x: __d) - __b) / __a; |
| 3154 | } |
| 3155 | |
| 3156 | return __x; |
| 3157 | } |
| 3158 | |
| 3159 | template<typename _RealType> |
| 3160 | template<typename _ForwardIterator, |
| 3161 | typename _UniformRandomNumberGenerator> |
| 3162 | void |
| 3163 | piecewise_linear_distribution<_RealType>:: |
| 3164 | __generate_impl(_ForwardIterator __f, _ForwardIterator __t, |
| 3165 | _UniformRandomNumberGenerator& __urng, |
| 3166 | const param_type& __param) |
| 3167 | { |
| 3168 | __glibcxx_function_requires(_ForwardIteratorConcept<_ForwardIterator>) |
| 3169 | // We could duplicate everything from operator()... |
| 3170 | while (__f != __t) |
| 3171 | *__f++ = this->operator()(__urng, __param); |
| 3172 | } |
| 3173 | |
| 3174 | template<typename _RealType, typename _CharT, typename _Traits> |
| 3175 | std::basic_ostream<_CharT, _Traits>& |
| 3176 | operator<<(std::basic_ostream<_CharT, _Traits>& __os, |
| 3177 | const piecewise_linear_distribution<_RealType>& __x) |
| 3178 | { |
| 3179 | using __ios_base = typename basic_ostream<_CharT, _Traits>::ios_base; |
| 3180 | |
| 3181 | const typename __ios_base::fmtflags __flags = __os.flags(); |
| 3182 | const _CharT __fill = __os.fill(); |
| 3183 | const std::streamsize __precision = __os.precision(); |
| 3184 | const _CharT __space = __os.widen(' '); |
| 3185 | __os.flags(__ios_base::scientific | __ios_base::left); |
| 3186 | __os.fill(__space); |
| 3187 | __os.precision(std::numeric_limits<_RealType>::max_digits10); |
| 3188 | |
| 3189 | std::vector<_RealType> __int = __x.intervals(); |
| 3190 | __os << __int.size() - 1; |
| 3191 | |
| 3192 | for (auto __xit = __int.begin(); __xit != __int.end(); ++__xit) |
| 3193 | __os << __space << *__xit; |
| 3194 | |
| 3195 | std::vector<double> __den = __x.densities(); |
| 3196 | for (auto __dit = __den.begin(); __dit != __den.end(); ++__dit) |
| 3197 | __os << __space << *__dit; |
| 3198 | |
| 3199 | __os.flags(__flags); |
| 3200 | __os.fill(__fill); |
| 3201 | __os.precision(__precision); |
| 3202 | return __os; |
| 3203 | } |
| 3204 | |
| 3205 | template<typename _RealType, typename _CharT, typename _Traits> |
| 3206 | std::basic_istream<_CharT, _Traits>& |
| 3207 | operator>>(std::basic_istream<_CharT, _Traits>& __is, |
| 3208 | piecewise_linear_distribution<_RealType>& __x) |
| 3209 | { |
| 3210 | using __ios_base = typename basic_istream<_CharT, _Traits>::ios_base; |
| 3211 | |
| 3212 | const typename __ios_base::fmtflags __flags = __is.flags(); |
| 3213 | __is.flags(__ios_base::dec | __ios_base::skipws); |
| 3214 | |
| 3215 | size_t __n; |
| 3216 | if (__is >> __n) |
| 3217 | { |
| 3218 | vector<_RealType> __int_vec; |
| 3219 | if (__detail::__extract_params(__is, __int_vec, __n + 1)) |
| 3220 | { |
| 3221 | vector<double> __den_vec; |
| 3222 | if (__detail::__extract_params(__is, __den_vec, __n + 1)) |
| 3223 | { |
| 3224 | __x.param({ __int_vec.begin(), __int_vec.end(), |
| 3225 | __den_vec.begin() }); |
| 3226 | } |
| 3227 | } |
| 3228 | } |
| 3229 | __is.flags(__flags); |
| 3230 | return __is; |
| 3231 | } |
| 3232 | |
| 3233 | |
| 3234 | template<typename _IntType, typename> |
| 3235 | seed_seq::seed_seq(std::initializer_list<_IntType> __il) |
| 3236 | { |
| 3237 | _M_v.reserve(n: __il.size()); |
| 3238 | for (auto __iter = __il.begin(); __iter != __il.end(); ++__iter) |
| 3239 | _M_v.push_back(__detail::__mod<result_type, |
| 3240 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
| 3241 | } |
| 3242 | |
| 3243 | template<typename _InputIterator> |
| 3244 | seed_seq::seed_seq(_InputIterator __begin, _InputIterator __end) |
| 3245 | { |
| 3246 | if _GLIBCXX17_CONSTEXPR (__is_random_access_iter<_InputIterator>::value) |
| 3247 | _M_v.reserve(n: std::distance(__begin, __end)); |
| 3248 | |
| 3249 | for (_InputIterator __iter = __begin; __iter != __end; ++__iter) |
| 3250 | _M_v.push_back(__detail::__mod<result_type, |
| 3251 | __detail::_Shift<result_type, 32>::__value>(*__iter)); |
| 3252 | } |
| 3253 | |
| 3254 | template<typename _RandomAccessIterator> |
| 3255 | void |
| 3256 | seed_seq::generate(_RandomAccessIterator __begin, |
| 3257 | _RandomAccessIterator __end) |
| 3258 | { |
| 3259 | typedef typename iterator_traits<_RandomAccessIterator>::value_type |
| 3260 | _Type; |
| 3261 | |
| 3262 | if (__begin == __end) |
| 3263 | return; |
| 3264 | |
| 3265 | std::fill(__begin, __end, _Type(0x8b8b8b8bu)); |
| 3266 | |
| 3267 | const size_t __n = __end - __begin; |
| 3268 | const size_t __s = _M_v.size(); |
| 3269 | const size_t __t = (__n >= 623) ? 11 |
| 3270 | : (__n >= 68) ? 7 |
| 3271 | : (__n >= 39) ? 5 |
| 3272 | : (__n >= 7) ? 3 |
| 3273 | : (__n - 1) / 2; |
| 3274 | const size_t __p = (__n - __t) / 2; |
| 3275 | const size_t __q = __p + __t; |
| 3276 | const size_t __m = std::max(a: size_t(__s + 1), b: __n); |
| 3277 | |
| 3278 | #ifndef __UINT32_TYPE__ |
| 3279 | struct _Up |
| 3280 | { |
| 3281 | _Up(uint_least32_t v) : _M_v(v & 0xffffffffu) { } |
| 3282 | |
| 3283 | operator uint_least32_t() const { return _M_v; } |
| 3284 | |
| 3285 | uint_least32_t _M_v; |
| 3286 | }; |
| 3287 | using uint32_t = _Up; |
| 3288 | #endif |
| 3289 | |
| 3290 | // k == 0, every element in [begin,end) equals 0x8b8b8b8bu |
| 3291 | { |
| 3292 | uint32_t __r1 = 1371501266u; |
| 3293 | uint32_t __r2 = __r1 + __s; |
| 3294 | __begin[__p] += __r1; |
| 3295 | __begin[__q] = (uint32_t)__begin[__q] + __r2; |
| 3296 | __begin[0] = __r2; |
| 3297 | } |
| 3298 | |
| 3299 | for (size_t __k = 1; __k <= __s; ++__k) |
| 3300 | { |
| 3301 | const size_t __kn = __k % __n; |
| 3302 | const size_t __kpn = (__k + __p) % __n; |
| 3303 | const size_t __kqn = (__k + __q) % __n; |
| 3304 | uint32_t __arg = (__begin[__kn] |
| 3305 | ^ __begin[__kpn] |
| 3306 | ^ __begin[(__k - 1) % __n]); |
| 3307 | uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
| 3308 | uint32_t __r2 = __r1 + (uint32_t)__kn + _M_v[__k - 1]; |
| 3309 | __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
| 3310 | __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
| 3311 | __begin[__kn] = __r2; |
| 3312 | } |
| 3313 | |
| 3314 | for (size_t __k = __s + 1; __k < __m; ++__k) |
| 3315 | { |
| 3316 | const size_t __kn = __k % __n; |
| 3317 | const size_t __kpn = (__k + __p) % __n; |
| 3318 | const size_t __kqn = (__k + __q) % __n; |
| 3319 | uint32_t __arg = (__begin[__kn] |
| 3320 | ^ __begin[__kpn] |
| 3321 | ^ __begin[(__k - 1) % __n]); |
| 3322 | uint32_t __r1 = 1664525u * (__arg ^ (__arg >> 27)); |
| 3323 | uint32_t __r2 = __r1 + (uint32_t)__kn; |
| 3324 | __begin[__kpn] = (uint32_t)__begin[__kpn] + __r1; |
| 3325 | __begin[__kqn] = (uint32_t)__begin[__kqn] + __r2; |
| 3326 | __begin[__kn] = __r2; |
| 3327 | } |
| 3328 | |
| 3329 | for (size_t __k = __m; __k < __m + __n; ++__k) |
| 3330 | { |
| 3331 | const size_t __kn = __k % __n; |
| 3332 | const size_t __kpn = (__k + __p) % __n; |
| 3333 | const size_t __kqn = (__k + __q) % __n; |
| 3334 | uint32_t __arg = (__begin[__kn] |
| 3335 | + __begin[__kpn] |
| 3336 | + __begin[(__k - 1) % __n]); |
| 3337 | uint32_t __r3 = 1566083941u * (__arg ^ (__arg >> 27)); |
| 3338 | uint32_t __r4 = __r3 - __kn; |
| 3339 | __begin[__kpn] ^= __r3; |
| 3340 | __begin[__kqn] ^= __r4; |
| 3341 | __begin[__kn] = __r4; |
| 3342 | } |
| 3343 | } |
| 3344 | |
| 3345 | template<typename _RealType, size_t __bits, |
| 3346 | typename _UniformRandomNumberGenerator> |
| 3347 | _RealType |
| 3348 | generate_canonical(_UniformRandomNumberGenerator& __urng) |
| 3349 | { |
| 3350 | static_assert(std::is_floating_point<_RealType>::value, |
| 3351 | "template argument must be a floating point type" ); |
| 3352 | |
| 3353 | const size_t __b |
| 3354 | = std::min(a: static_cast<size_t>(std::numeric_limits<_RealType>::digits), |
| 3355 | b: __bits); |
| 3356 | const long double __r = static_cast<long double>(__urng.max()) |
| 3357 | - static_cast<long double>(__urng.min()) + 1.0L; |
| 3358 | const size_t __log2r = std::log(x: __r) / std::log(x: 2.0L); |
| 3359 | const size_t __m = std::max<size_t>(a: 1UL, |
| 3360 | b: (__b + __log2r - 1UL) / __log2r); |
| 3361 | _RealType __ret; |
| 3362 | _RealType __sum = _RealType(0); |
| 3363 | _RealType __tmp = _RealType(1); |
| 3364 | for (size_t __k = __m; __k != 0; --__k) |
| 3365 | { |
| 3366 | __sum += _RealType(__urng() - __urng.min()) * __tmp; |
| 3367 | __tmp *= __r; |
| 3368 | } |
| 3369 | __ret = __sum / __tmp; |
| 3370 | if (__builtin_expect(__ret >= _RealType(1), 0)) |
| 3371 | { |
| 3372 | #if _GLIBCXX_USE_C99_MATH_TR1 |
| 3373 | __ret = std::nextafter(_RealType(1), _RealType(0)); |
| 3374 | #else |
| 3375 | __ret = _RealType(1) |
| 3376 | - std::numeric_limits<_RealType>::epsilon() / _RealType(2); |
| 3377 | #endif |
| 3378 | } |
| 3379 | return __ret; |
| 3380 | } |
| 3381 | |
| 3382 | _GLIBCXX_END_NAMESPACE_VERSION |
| 3383 | } // namespace |
| 3384 | |
| 3385 | #endif |
| 3386 | |