| 1 | /**************************************************************************** |
| 2 | ** |
| 3 | ** Copyright (C) 2019 The Qt Company Ltd. |
| 4 | ** Contact: https://www.qt.io/licensing/ |
| 5 | ** |
| 6 | ** This file is part of the QtQml module of the Qt Toolkit. |
| 7 | ** |
| 8 | ** $QT_BEGIN_LICENSE:LGPL$ |
| 9 | ** Commercial License Usage |
| 10 | ** Licensees holding valid commercial Qt licenses may use this file in |
| 11 | ** accordance with the commercial license agreement provided with the |
| 12 | ** Software or, alternatively, in accordance with the terms contained in |
| 13 | ** a written agreement between you and The Qt Company. For licensing terms |
| 14 | ** and conditions see https://www.qt.io/terms-conditions. For further |
| 15 | ** information use the contact form at https://www.qt.io/contact-us. |
| 16 | ** |
| 17 | ** GNU Lesser General Public License Usage |
| 18 | ** Alternatively, this file may be used under the terms of the GNU Lesser |
| 19 | ** General Public License version 3 as published by the Free Software |
| 20 | ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| 21 | ** packaging of this file. Please review the following information to |
| 22 | ** ensure the GNU Lesser General Public License version 3 requirements |
| 23 | ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| 24 | ** |
| 25 | ** GNU General Public License Usage |
| 26 | ** Alternatively, this file may be used under the terms of the GNU |
| 27 | ** General Public License version 2.0 or (at your option) the GNU General |
| 28 | ** Public license version 3 or any later version approved by the KDE Free |
| 29 | ** Qt Foundation. The licenses are as published by the Free Software |
| 30 | ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| 31 | ** included in the packaging of this file. Please review the following |
| 32 | ** information to ensure the GNU General Public License requirements will |
| 33 | ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| 34 | ** https://www.gnu.org/licenses/gpl-3.0.html. |
| 35 | ** |
| 36 | ** $QT_END_LICENSE$ |
| 37 | ** |
| 38 | ****************************************************************************/ |
| 39 | #ifndef QV4STATICVALUE_P_H |
| 40 | #define QV4STATICVALUE_P_H |
| 41 | |
| 42 | // |
| 43 | // W A R N I N G |
| 44 | // ------------- |
| 45 | // |
| 46 | // This file is not part of the Qt API. It exists purely as an |
| 47 | // implementation detail. This header file may change from version to |
| 48 | // version without notice, or even be removed. |
| 49 | // |
| 50 | // We mean it. |
| 51 | // |
| 52 | |
| 53 | #include <QtCore/private/qnumeric_p.h> |
| 54 | #include <cstring> |
| 55 | |
| 56 | #ifdef QT_NO_DEBUG |
| 57 | #define QV4_NEARLY_ALWAYS_INLINE Q_ALWAYS_INLINE |
| 58 | #else |
| 59 | #define QV4_NEARLY_ALWAYS_INLINE inline |
| 60 | #endif |
| 61 | |
| 62 | QT_BEGIN_NAMESPACE |
| 63 | |
| 64 | namespace QV4 { |
| 65 | |
| 66 | // ReturnedValue is used to return values from runtime methods |
| 67 | // the type has to be a primitive type (no struct or union), so that the compiler |
| 68 | // will return it in a register on all platforms. |
| 69 | // It will be returned in rax on x64, [eax,edx] on x86 and [r0,r1] on arm |
| 70 | typedef quint64 ReturnedValue; |
| 71 | |
| 72 | struct Double { |
| 73 | quint64 d; |
| 74 | |
| 75 | Double(double dbl) { |
| 76 | memcpy(dest: &d, src: &dbl, n: sizeof(double)); |
| 77 | } |
| 78 | |
| 79 | int sign() const { |
| 80 | return (d >> 63) ? -1 : 1; |
| 81 | } |
| 82 | |
| 83 | bool isDenormal() const { |
| 84 | return static_cast<int>((d << 1) >> 53) == 0; |
| 85 | } |
| 86 | |
| 87 | int exponent() const { |
| 88 | return static_cast<int>((d << 1) >> 53) - 1023; |
| 89 | } |
| 90 | |
| 91 | quint64 significant() const { |
| 92 | quint64 m = (d << 12) >> 12; |
| 93 | if (!isDenormal()) |
| 94 | m |= (static_cast<quint64>(1) << 52); |
| 95 | return m; |
| 96 | } |
| 97 | |
| 98 | static int toInt32(double d) { |
| 99 | int i = static_cast<int>(d); |
| 100 | if (i == d) |
| 101 | return i; |
| 102 | return Double(d).toInt32(); |
| 103 | } |
| 104 | |
| 105 | int toInt32() { |
| 106 | int e = exponent() - 52; |
| 107 | if (e < 0) { |
| 108 | if (e <= -53) |
| 109 | return 0; |
| 110 | return sign() * static_cast<int>(significant() >> -e); |
| 111 | } else { |
| 112 | if (e > 31) |
| 113 | return 0; |
| 114 | return sign() * (static_cast<int>(significant()) << e); |
| 115 | } |
| 116 | } |
| 117 | }; |
| 118 | |
| 119 | struct StaticValue |
| 120 | { |
| 121 | StaticValue() = default; |
| 122 | constexpr StaticValue(quint64 val) : _val(val) {} |
| 123 | |
| 124 | StaticValue &operator=(ReturnedValue v) |
| 125 | { |
| 126 | _val = v; |
| 127 | return *this; |
| 128 | } |
| 129 | |
| 130 | template<typename Value> |
| 131 | StaticValue &operator=(const Value &); |
| 132 | |
| 133 | template<typename Value> |
| 134 | const Value &asValue() const; |
| 135 | |
| 136 | template<typename Value> |
| 137 | Value &asValue(); |
| 138 | |
| 139 | /* |
| 140 | We use 8 bytes for a value and a different variant of NaN boxing. A Double |
| 141 | NaN (actually -qNaN) is indicated by a number that has the top 13 bits set, and for a |
| 142 | signalling NaN it is the top 14 bits. The other values are usually set to 0 by the |
| 143 | processor, and are thus free for us to store other data. We keep pointers in there for |
| 144 | managed objects, and encode the other types using the free space given to use by the unused |
| 145 | bits for NaN values. This also works for pointers on 64 bit systems, as they all currently |
| 146 | only have 48 bits of addressable memory. (Note: we do leave the lower 49 bits available for |
| 147 | pointers.) |
| 148 | |
| 149 | We xor Doubles with (0xffff8000 << 32). That has the effect that no doubles will |
| 150 | get encoded with bits 63-49 all set to 0. We then use bit 48 to distinguish between |
| 151 | managed/undefined (0), or Null/Int/Bool/Empty (1). So, storing a 49 bit pointer will leave |
| 152 | the top 15 bits 0, which is exactly the 'natural' representation of pointers. If bit 49 is |
| 153 | set, bit 48 indicates Empty (0) or integer-convertible (1). Then the 3 bit below that are |
| 154 | used to encode Null/Int/Bool. |
| 155 | |
| 156 | Undefined is encoded as a managed pointer with value 0. This is the same as a nullptr. |
| 157 | |
| 158 | Specific bit-sequences: |
| 159 | 0 = always 0 |
| 160 | 1 = always 1 |
| 161 | x = stored value |
| 162 | a,b,c,d = specific bit values, see notes |
| 163 | |
| 164 | 32109876 54321098 76543210 98765432 10987654 32109876 54321098 76543210 | |
| 165 | 66665555 55555544 44444444 33333333 33222222 22221111 11111100 00000000 | JS Value |
| 166 | ------------------------------------------------------------------------+-------------- |
| 167 | 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 | Undefined |
| 168 | 00000000 0000000x xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | Managed (heap pointer) |
| 169 | a0000000 0000bc00 00000000 00000000 00000000 00000000 00000000 00000000 | NaN/Inf |
| 170 | dddddddd ddddddxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | double |
| 171 | 00000000 00000010 00000000 00000000 00000000 00000000 00000000 00000000 | empty (non-sparse array hole) |
| 172 | 00000000 00000010 10000000 00000000 00000000 00000000 00000000 00000000 | Null |
| 173 | 00000000 00000011 00000000 00000000 00000000 00000000 00000000 0000000x | Bool |
| 174 | 00000000 00000011 10000000 00000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | Int |
| 175 | |
| 176 | Notes: |
| 177 | - a: xor-ed signbit, always 1 for NaN |
| 178 | - bc, xor-ed values: 11 = inf, 10 = sNaN, 01 = qNaN, 00 = boxed value |
| 179 | - d: xor-ed bits, where at least one bit is set, so: (val >> (64-14)) > 0 |
| 180 | - Undefined maps to C++ nullptr, so the "default" initialization is the same for both C++ |
| 181 | and JS |
| 182 | - Managed has the left 15 bits set to 0, so: (val >> (64-15)) == 0 |
| 183 | - empty, Null, Bool, and Int have the left 14 bits set to 0, and bit 49 set to 1, |
| 184 | so: (val >> (64-15)) == 1 |
| 185 | - Null, Bool, and Int have bit 48 set, indicating integer-convertible |
| 186 | - xoring _val with NaNEncodeMask will convert to a double in "natural" representation, where |
| 187 | any non double results in a NaN |
| 188 | - on 32bit we can use the fact that addresses are 32bits wide, so the tag part (bits 32 to |
| 189 | 63) are zero. No need to shift. |
| 190 | */ |
| 191 | |
| 192 | quint64 _val; |
| 193 | |
| 194 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR quint64 &rawValueRef() { return _val; } |
| 195 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR quint64 rawValue() const { return _val; } |
| 196 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR void setRawValue(quint64 raw) { _val = raw; } |
| 197 | |
| 198 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 199 | static inline int valueOffset() { return 0; } |
| 200 | static inline int tagOffset() { return 4; } |
| 201 | #else // !Q_LITTLE_ENDIAN |
| 202 | static inline int valueOffset() { return 4; } |
| 203 | static inline int tagOffset() { return 0; } |
| 204 | #endif |
| 205 | static inline constexpr quint64 tagValue(quint32 tag, quint32 value) { return quint64(tag) << 32 | value; } |
| 206 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR void setTagValue(quint32 tag, quint32 value) { _val = quint64(tag) << 32 | value; } |
| 207 | QV4_NEARLY_ALWAYS_INLINE constexpr quint32 value() const { return _val & quint64(~quint32(0)); } |
| 208 | QV4_NEARLY_ALWAYS_INLINE constexpr quint32 tag() const { return _val >> 32; } |
| 209 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR void setTag(quint32 tag) { setTagValue(tag, value: value()); } |
| 210 | |
| 211 | QV4_NEARLY_ALWAYS_INLINE constexpr int int_32() const |
| 212 | { |
| 213 | return int(value()); |
| 214 | } |
| 215 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR void setInt_32(int i) |
| 216 | { |
| 217 | setTagValue(tag: quint32(ValueTypeInternal::Integer), value: quint32(i)); |
| 218 | } |
| 219 | QV4_NEARLY_ALWAYS_INLINE uint uint_32() const { return value(); } |
| 220 | |
| 221 | QV4_NEARLY_ALWAYS_INLINE Q_DECL_RELAXED_CONSTEXPR void setEmpty() |
| 222 | { |
| 223 | setTagValue(tag: quint32(ValueTypeInternal::Empty), value: 0); |
| 224 | } |
| 225 | |
| 226 | // ### Fix for 32 bit (easiest solution is to set highest bit to 1 for mananged/undefined/integercompatible |
| 227 | // and use negative numbers here |
| 228 | enum QuickType { |
| 229 | QT_ManagedOrUndefined = 0, |
| 230 | QT_ManagedOrUndefined1 = 1, |
| 231 | QT_ManagedOrUndefined2 = 2, |
| 232 | QT_ManagedOrUndefined3 = 3, |
| 233 | QT_Empty = 4, |
| 234 | QT_Null = 5, |
| 235 | QT_Bool = 6, |
| 236 | QT_Int = 7 |
| 237 | // all other values are doubles |
| 238 | }; |
| 239 | |
| 240 | enum Type { |
| 241 | Undefined_Type = 0, |
| 242 | Managed_Type = 1, |
| 243 | Empty_Type = 4, |
| 244 | Null_Type = 5, |
| 245 | Boolean_Type = 6, |
| 246 | Integer_Type = 7, |
| 247 | Double_Type = 8 |
| 248 | }; |
| 249 | |
| 250 | inline Type type() const { |
| 251 | int t = quickType(); |
| 252 | if (t < QT_Empty) |
| 253 | return _val ? Managed_Type : Undefined_Type; |
| 254 | if (t > QT_Int) |
| 255 | return Double_Type; |
| 256 | return static_cast<Type>(t); |
| 257 | } |
| 258 | |
| 259 | // Shared between 32-bit and 64-bit encoding |
| 260 | enum { |
| 261 | Tag_Shift = 32 |
| 262 | }; |
| 263 | |
| 264 | // Used only by 64-bit encoding |
| 265 | static const quint64 NaNEncodeMask = 0xfffc000000000000ull; |
| 266 | enum { |
| 267 | IsDouble_Shift = 64-14, |
| 268 | IsManagedOrUndefined_Shift = 64-15, |
| 269 | IsIntegerConvertible_Shift = 64-15, |
| 270 | IsIntegerOrBool_Shift = 64-16, |
| 271 | QuickType_Shift = 64 - 17, |
| 272 | IsPositiveIntShift = 31 |
| 273 | }; |
| 274 | |
| 275 | static const quint64 Immediate_Mask_64 = 0x00020000u; // bit 49 |
| 276 | |
| 277 | enum class ValueTypeInternal_64 { |
| 278 | Empty = Immediate_Mask_64 | 0, |
| 279 | Null = Immediate_Mask_64 | 0x08000u, |
| 280 | Boolean = Immediate_Mask_64 | 0x10000u, |
| 281 | Integer = Immediate_Mask_64 | 0x18000u |
| 282 | }; |
| 283 | |
| 284 | // Used only by 32-bit encoding |
| 285 | enum Masks { |
| 286 | SilentNaNBit = 0x00040000, |
| 287 | NotDouble_Mask = 0x7ffa0000, |
| 288 | }; |
| 289 | static const quint64 Immediate_Mask_32 = NotDouble_Mask | 0x00020000u | SilentNaNBit; |
| 290 | |
| 291 | enum class ValueTypeInternal_32 { |
| 292 | Empty = Immediate_Mask_32 | 0, |
| 293 | Null = Immediate_Mask_32 | 0x08000u, |
| 294 | Boolean = Immediate_Mask_32 | 0x10000u, |
| 295 | Integer = Immediate_Mask_32 | 0x18000u |
| 296 | }; |
| 297 | |
| 298 | enum { |
| 299 | Managed_Type_Internal = 0 |
| 300 | }; |
| 301 | |
| 302 | using ValueTypeInternal = ValueTypeInternal_64; |
| 303 | |
| 304 | enum { |
| 305 | NaN_Mask = 0x7ff80000, |
| 306 | }; |
| 307 | |
| 308 | inline quint64 quickType() const { return (_val >> QuickType_Shift); } |
| 309 | |
| 310 | // used internally in property |
| 311 | inline bool isEmpty() const { return tag() == quint32(ValueTypeInternal::Empty); } |
| 312 | inline bool isNull() const { return tag() == quint32(ValueTypeInternal::Null); } |
| 313 | inline bool isBoolean() const { return tag() == quint32(ValueTypeInternal::Boolean); } |
| 314 | inline bool isInteger() const { return tag() == quint32(ValueTypeInternal::Integer); } |
| 315 | inline bool isNullOrUndefined() const { return isNull() || isUndefined(); } |
| 316 | inline bool isNumber() const { return quickType() >= QT_Int; } |
| 317 | |
| 318 | inline bool isUndefined() const { return _val == 0; } |
| 319 | inline bool isDouble() const { return (_val >> IsDouble_Shift); } |
| 320 | inline bool isManaged() const |
| 321 | { |
| 322 | #if QT_POINTER_SIZE == 4 |
| 323 | return value() && tag() == Managed_Type_Internal; |
| 324 | #else |
| 325 | return _val && ((_val >> IsManagedOrUndefined_Shift) == 0); |
| 326 | #endif |
| 327 | } |
| 328 | inline bool isManagedOrUndefined() const |
| 329 | { |
| 330 | #if QT_POINTER_SIZE == 4 |
| 331 | return tag() == Managed_Type_Internal; |
| 332 | #else |
| 333 | return ((_val >> IsManagedOrUndefined_Shift) == 0); |
| 334 | #endif |
| 335 | } |
| 336 | |
| 337 | inline bool isIntOrBool() const { |
| 338 | return (_val >> IsIntegerOrBool_Shift) == 3; |
| 339 | } |
| 340 | |
| 341 | inline bool integerCompatible() const { |
| 342 | Q_ASSERT(!isEmpty()); |
| 343 | return (_val >> IsIntegerConvertible_Shift) == 1; |
| 344 | } |
| 345 | |
| 346 | static inline bool integerCompatible(StaticValue a, StaticValue b) { |
| 347 | return a.integerCompatible() && b.integerCompatible(); |
| 348 | } |
| 349 | |
| 350 | static inline bool bothDouble(StaticValue a, StaticValue b) { |
| 351 | return a.isDouble() && b.isDouble(); |
| 352 | } |
| 353 | |
| 354 | inline bool isNaN() const |
| 355 | { |
| 356 | return (tag() & 0x7ffc0000 ) == 0x00040000; |
| 357 | } |
| 358 | |
| 359 | inline bool isPositiveInt() const { |
| 360 | #if QT_POINTER_SIZE == 4 |
| 361 | return isInteger() && int_32() >= 0; |
| 362 | #else |
| 363 | return (_val >> IsPositiveIntShift) == (quint64(ValueTypeInternal::Integer) << 1); |
| 364 | #endif |
| 365 | } |
| 366 | |
| 367 | QV4_NEARLY_ALWAYS_INLINE double doubleValue() const { |
| 368 | Q_ASSERT(isDouble()); |
| 369 | double d; |
| 370 | StaticValue v = *this; |
| 371 | v._val ^= NaNEncodeMask; |
| 372 | memcpy(dest: &d, src: &v._val, n: 8); |
| 373 | return d; |
| 374 | } |
| 375 | |
| 376 | QV4_NEARLY_ALWAYS_INLINE void setDouble(double d) { |
| 377 | if (qt_is_nan(d)) |
| 378 | d = qt_qnan(); |
| 379 | memcpy(dest: &_val, src: &d, n: 8); |
| 380 | _val ^= NaNEncodeMask; |
| 381 | Q_ASSERT(isDouble()); |
| 382 | } |
| 383 | |
| 384 | inline bool isInt32() { |
| 385 | if (tag() == quint32(ValueTypeInternal::Integer)) |
| 386 | return true; |
| 387 | if (isDouble()) { |
| 388 | double d = doubleValue(); |
| 389 | if (isInt32(d)) { |
| 390 | setInt_32(int(d)); |
| 391 | return true; |
| 392 | } |
| 393 | } |
| 394 | return false; |
| 395 | } |
| 396 | |
| 397 | QV4_NEARLY_ALWAYS_INLINE static bool isInt32(double d) { |
| 398 | int i = int(d); |
| 399 | return (i == d && !(d == 0 && std::signbit(x: d))); |
| 400 | } |
| 401 | |
| 402 | double asDouble() const { |
| 403 | if (tag() == quint32(ValueTypeInternal::Integer)) |
| 404 | return int_32(); |
| 405 | return doubleValue(); |
| 406 | } |
| 407 | |
| 408 | bool booleanValue() const { |
| 409 | return int_32(); |
| 410 | } |
| 411 | |
| 412 | int integerValue() const { |
| 413 | return int_32(); |
| 414 | } |
| 415 | |
| 416 | inline bool tryIntegerConversion() { |
| 417 | bool b = integerCompatible(); |
| 418 | if (b) |
| 419 | setTagValue(tag: quint32(ValueTypeInternal::Integer), value: value()); |
| 420 | return b; |
| 421 | } |
| 422 | |
| 423 | bool toBoolean() const { |
| 424 | if (integerCompatible()) |
| 425 | return static_cast<bool>(int_32()); |
| 426 | |
| 427 | if (isManagedOrUndefined()) |
| 428 | return false; |
| 429 | |
| 430 | // double |
| 431 | const double d = doubleValue(); |
| 432 | return d && !std::isnan(x: d); |
| 433 | } |
| 434 | |
| 435 | inline int toInt32() const |
| 436 | { |
| 437 | switch (type()) { |
| 438 | case Null_Type: |
| 439 | case Boolean_Type: |
| 440 | case Integer_Type: |
| 441 | return int_32(); |
| 442 | case Double_Type: |
| 443 | return Double::toInt32(d: doubleValue()); |
| 444 | case Empty_Type: |
| 445 | case Undefined_Type: |
| 446 | case Managed_Type: |
| 447 | break; |
| 448 | } |
| 449 | return Double::toInt32(d: std::numeric_limits<double>::quiet_NaN()); |
| 450 | } |
| 451 | |
| 452 | ReturnedValue *data_ptr() { return &_val; } |
| 453 | constexpr ReturnedValue asReturnedValue() const { return _val; } |
| 454 | constexpr static StaticValue fromReturnedValue(ReturnedValue val) { return {val}; } |
| 455 | |
| 456 | inline static constexpr StaticValue emptyValue() { return { tagValue(tag: quint32(ValueTypeInternal::Empty), value: 0) }; } |
| 457 | static inline constexpr StaticValue fromBoolean(bool b) { return { tagValue(tag: quint32(ValueTypeInternal::Boolean), value: b) }; } |
| 458 | static inline constexpr StaticValue fromInt32(int i) { return { tagValue(tag: quint32(ValueTypeInternal::Integer), value: quint32(i)) }; } |
| 459 | inline static constexpr StaticValue undefinedValue() { return { 0 }; } |
| 460 | static inline constexpr StaticValue nullValue() { return { tagValue(tag: quint32(ValueTypeInternal::Null), value: 0) }; } |
| 461 | |
| 462 | static inline StaticValue fromDouble(double d) |
| 463 | { |
| 464 | StaticValue v; |
| 465 | v.setDouble(d); |
| 466 | return v; |
| 467 | } |
| 468 | |
| 469 | static inline StaticValue fromUInt32(uint i) |
| 470 | { |
| 471 | StaticValue v; |
| 472 | if (i < uint(std::numeric_limits<int>::max())) { |
| 473 | v.setTagValue(tag: quint32(ValueTypeInternal::Integer), value: i); |
| 474 | } else { |
| 475 | v.setDouble(i); |
| 476 | } |
| 477 | return v; |
| 478 | } |
| 479 | |
| 480 | static double toInteger(double d) |
| 481 | { |
| 482 | if (std::isnan(x: d)) |
| 483 | return +0; |
| 484 | if (!d || std::isinf(x: d)) |
| 485 | return d; |
| 486 | return d >= 0 ? std::floor(x: d) : std::ceil(x: d); |
| 487 | } |
| 488 | |
| 489 | static int toInt32(double d) |
| 490 | { |
| 491 | return Double::toInt32(d); |
| 492 | } |
| 493 | |
| 494 | static unsigned int toUInt32(double d) |
| 495 | { |
| 496 | return static_cast<uint>(toInt32(d)); |
| 497 | } |
| 498 | }; |
| 499 | Q_STATIC_ASSERT(std::is_trivial<StaticValue>::value); |
| 500 | |
| 501 | struct Encode { |
| 502 | static constexpr ReturnedValue undefined() { |
| 503 | return StaticValue::undefinedValue().asReturnedValue(); |
| 504 | } |
| 505 | static constexpr ReturnedValue null() { |
| 506 | return StaticValue::nullValue().asReturnedValue(); |
| 507 | } |
| 508 | |
| 509 | explicit constexpr Encode(bool b) |
| 510 | : val(StaticValue::fromBoolean(b).asReturnedValue()) |
| 511 | { |
| 512 | } |
| 513 | explicit Encode(double d) { |
| 514 | val = StaticValue::fromDouble(d).asReturnedValue(); |
| 515 | } |
| 516 | explicit constexpr Encode(int i) |
| 517 | : val(StaticValue::fromInt32(i).asReturnedValue()) |
| 518 | { |
| 519 | } |
| 520 | explicit Encode(uint i) { |
| 521 | val = StaticValue::fromUInt32(i).asReturnedValue(); |
| 522 | } |
| 523 | explicit constexpr Encode(ReturnedValue v) |
| 524 | : val(v) |
| 525 | { |
| 526 | } |
| 527 | constexpr Encode(StaticValue v) |
| 528 | : val(v.asReturnedValue()) |
| 529 | { |
| 530 | } |
| 531 | |
| 532 | template<typename HeapBase> |
| 533 | explicit Encode(HeapBase *o); |
| 534 | |
| 535 | explicit Encode(StaticValue *o) { |
| 536 | Q_ASSERT(o); |
| 537 | val = o->asReturnedValue(); |
| 538 | } |
| 539 | |
| 540 | static ReturnedValue smallestNumber(double d) { |
| 541 | if (StaticValue::isInt32(d)) |
| 542 | return Encode(static_cast<int>(d)); |
| 543 | else |
| 544 | return Encode(d); |
| 545 | } |
| 546 | |
| 547 | constexpr operator ReturnedValue() const { |
| 548 | return val; |
| 549 | } |
| 550 | quint64 val; |
| 551 | private: |
| 552 | explicit Encode(void *); |
| 553 | }; |
| 554 | |
| 555 | } |
| 556 | |
| 557 | QT_END_NAMESPACE |
| 558 | |
| 559 | #endif // QV4STATICVALUE_P_H |
| 560 | |