| 1 | // Copyright (C) 2020 The Qt Company Ltd. |
| 2 | // Copyright (C) 2021 Intel Corporation. |
| 3 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 4 | |
| 5 | #ifndef QNUMERIC_P_H |
| 6 | #define QNUMERIC_P_H |
| 7 | |
| 8 | // |
| 9 | // W A R N I N G |
| 10 | // ------------- |
| 11 | // |
| 12 | // This file is not part of the Qt API. It exists purely as an |
| 13 | // implementation detail. This header file may change from version to |
| 14 | // version without notice, or even be removed. |
| 15 | // |
| 16 | // We mean it. |
| 17 | // |
| 18 | |
| 19 | #include "QtCore/private/qglobal_p.h" |
| 20 | #include "QtCore/qnumeric.h" |
| 21 | #include "QtCore/qsimd.h" |
| 22 | #include <cmath> |
| 23 | #include <limits> |
| 24 | #include <type_traits> |
| 25 | |
| 26 | #include <QtCore/q26numeric.h> // temporarily, for saturate_cast |
| 27 | |
| 28 | #ifndef __has_extension |
| 29 | # define __has_extension(X) 0 |
| 30 | #endif |
| 31 | |
| 32 | #if !defined(Q_CC_MSVC) && defined(Q_OS_QNX) |
| 33 | # include <math.h> |
| 34 | # ifdef isnan |
| 35 | # define QT_MATH_H_DEFINES_MACROS |
| 36 | QT_BEGIN_NAMESPACE |
| 37 | namespace qnumeric_std_wrapper { |
| 38 | // the 'using namespace std' below is cases where the stdlib already put the math.h functions in the std namespace and undefined the macros. |
| 39 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(double d) { using namespace std; return isnan(d); } |
| 40 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(double d) { using namespace std; return isinf(d); } |
| 41 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(double d) { using namespace std; return isfinite(d); } |
| 42 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(double d) { using namespace std; return fpclassify(d); } |
| 43 | Q_DECL_CONST_FUNCTION static inline bool math_h_isnan(float f) { using namespace std; return isnan(f); } |
| 44 | Q_DECL_CONST_FUNCTION static inline bool math_h_isinf(float f) { using namespace std; return isinf(f); } |
| 45 | Q_DECL_CONST_FUNCTION static inline bool math_h_isfinite(float f) { using namespace std; return isfinite(f); } |
| 46 | Q_DECL_CONST_FUNCTION static inline int math_h_fpclassify(float f) { using namespace std; return fpclassify(f); } |
| 47 | } |
| 48 | QT_END_NAMESPACE |
| 49 | // These macros from math.h conflict with the real functions in the std namespace. |
| 50 | # undef signbit |
| 51 | # undef isnan |
| 52 | # undef isinf |
| 53 | # undef isfinite |
| 54 | # undef fpclassify |
| 55 | # endif // defined(isnan) |
| 56 | #endif |
| 57 | |
| 58 | QT_BEGIN_NAMESPACE |
| 59 | |
| 60 | class qfloat16; |
| 61 | |
| 62 | namespace qnumeric_std_wrapper { |
| 63 | #if defined(QT_MATH_H_DEFINES_MACROS) |
| 64 | # undef QT_MATH_H_DEFINES_MACROS |
| 65 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return math_h_isnan(d); } |
| 66 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return math_h_isinf(d); } |
| 67 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return math_h_isfinite(d); } |
| 68 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return math_h_fpclassify(d); } |
| 69 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return math_h_isnan(f); } |
| 70 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return math_h_isinf(f); } |
| 71 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return math_h_isfinite(f); } |
| 72 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return math_h_fpclassify(f); } |
| 73 | #else |
| 74 | Q_DECL_CONST_FUNCTION static inline bool isnan(double d) { return std::isnan(x: d); } |
| 75 | Q_DECL_CONST_FUNCTION static inline bool isinf(double d) { return std::isinf(x: d); } |
| 76 | Q_DECL_CONST_FUNCTION static inline bool isfinite(double d) { return std::isfinite(x: d); } |
| 77 | Q_DECL_CONST_FUNCTION static inline int fpclassify(double d) { return std::fpclassify(x: d); } |
| 78 | Q_DECL_CONST_FUNCTION static inline bool isnan(float f) { return std::isnan(x: f); } |
| 79 | Q_DECL_CONST_FUNCTION static inline bool isinf(float f) { return std::isinf(x: f); } |
| 80 | Q_DECL_CONST_FUNCTION static inline bool isfinite(float f) { return std::isfinite(x: f); } |
| 81 | Q_DECL_CONST_FUNCTION static inline int fpclassify(float f) { return std::fpclassify(x: f); } |
| 82 | #endif |
| 83 | } |
| 84 | |
| 85 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_inf() noexcept |
| 86 | { |
| 87 | static_assert(std::numeric_limits<double>::has_infinity, |
| 88 | "platform has no definition for infinity for type double" ); |
| 89 | return std::numeric_limits<double>::infinity(); |
| 90 | } |
| 91 | |
| 92 | #if QT_CONFIG(signaling_nan) |
| 93 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_snan() noexcept |
| 94 | { |
| 95 | static_assert(std::numeric_limits<double>::has_signaling_NaN, |
| 96 | "platform has no definition for signaling NaN for type double" ); |
| 97 | return std::numeric_limits<double>::signaling_NaN(); |
| 98 | } |
| 99 | #endif |
| 100 | |
| 101 | // Quiet NaN |
| 102 | constexpr Q_DECL_CONST_FUNCTION static inline double qt_qnan() noexcept |
| 103 | { |
| 104 | static_assert(std::numeric_limits<double>::has_quiet_NaN, |
| 105 | "platform has no definition for quiet NaN for type double" ); |
| 106 | return std::numeric_limits<double>::quiet_NaN(); |
| 107 | } |
| 108 | |
| 109 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(double d) |
| 110 | { |
| 111 | return qnumeric_std_wrapper::isinf(d); |
| 112 | } |
| 113 | |
| 114 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(double d) |
| 115 | { |
| 116 | return qnumeric_std_wrapper::isnan(d); |
| 117 | } |
| 118 | |
| 119 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(double d) |
| 120 | { |
| 121 | return qnumeric_std_wrapper::isfinite(d); |
| 122 | } |
| 123 | |
| 124 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(double d) |
| 125 | { |
| 126 | return qnumeric_std_wrapper::fpclassify(d); |
| 127 | } |
| 128 | |
| 129 | Q_DECL_CONST_FUNCTION static inline bool qt_is_inf(float f) |
| 130 | { |
| 131 | return qnumeric_std_wrapper::isinf(f); |
| 132 | } |
| 133 | |
| 134 | Q_DECL_CONST_FUNCTION static inline bool qt_is_nan(float f) |
| 135 | { |
| 136 | return qnumeric_std_wrapper::isnan(f); |
| 137 | } |
| 138 | |
| 139 | Q_DECL_CONST_FUNCTION static inline bool qt_is_finite(float f) |
| 140 | { |
| 141 | return qnumeric_std_wrapper::isfinite(f); |
| 142 | } |
| 143 | |
| 144 | Q_DECL_CONST_FUNCTION static inline int qt_fpclassify(float f) |
| 145 | { |
| 146 | return qnumeric_std_wrapper::fpclassify(f); |
| 147 | } |
| 148 | |
| 149 | #ifndef Q_QDOC |
| 150 | namespace { |
| 151 | /*! |
| 152 | Returns true if the double \a v can be converted to type \c T, false if |
| 153 | it's out of range. If the conversion is successful, the converted value is |
| 154 | stored in \a value; if it was not successful, \a value will contain the |
| 155 | minimum or maximum of T, depending on the sign of \a d. If \c T is |
| 156 | unsigned, then \a value contains the absolute value of \a v. If \c T is \c |
| 157 | float, an underflow is also signalled by returning false and setting \a |
| 158 | value to zero. |
| 159 | |
| 160 | This function works for v containing infinities, but not NaN. It's the |
| 161 | caller's responsibility to exclude that possibility before calling it. |
| 162 | */ |
| 163 | template <typename T> static inline std::enable_if_t<std::is_integral_v<T>, bool> |
| 164 | convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true) |
| 165 | { |
| 166 | static_assert(std::is_integral_v<T>); |
| 167 | constexpr bool TypeIsLarger = std::numeric_limits<T>::digits > std::numeric_limits<double>::digits; |
| 168 | |
| 169 | if constexpr (TypeIsLarger) { |
| 170 | using S = std::make_signed_t<T>; |
| 171 | constexpr S max_mantissa = S(1) << std::numeric_limits<double>::digits; |
| 172 | // T has more bits than double's mantissa, so don't allow "upgrading" |
| 173 | // to T (makes it look like the number had more precision than really |
| 174 | // was transmitted) |
| 175 | if (!allow_precision_upgrade && !(v <= double(max_mantissa) && v >= double(-max_mantissa - 1))) |
| 176 | return false; |
| 177 | } |
| 178 | |
| 179 | constexpr T Tmin = (std::numeric_limits<T>::min)(); |
| 180 | constexpr T Tmax = (std::numeric_limits<T>::max)(); |
| 181 | |
| 182 | // The [conv.fpint] (7.10 Floating-integral conversions) section of the C++ |
| 183 | // standard says only exact conversions are guaranteed. Converting |
| 184 | // integrals to floating-point with loss of precision has implementation- |
| 185 | // defined behavior whether the next higher or next lower is returned; |
| 186 | // converting FP to integral is UB if it can't be represented. |
| 187 | // |
| 188 | // That means we can't write UINT64_MAX+1. Writing ldexp(1, 64) would be |
| 189 | // correct, but Clang, ICC and MSVC don't realize that it's a constant and |
| 190 | // the math call stays in the compiled code. |
| 191 | |
| 192 | #if defined(Q_PROCESSOR_X86_64) && defined(__SSE2__) |
| 193 | // Of course, UB doesn't apply if we use intrinsics, in which case we are |
| 194 | // allowed to dpeend on exactly the processor's behavior. This |
| 195 | // implementation uses the truncating conversions from Scalar Double to |
| 196 | // integral types (CVTTSD2SI and VCVTTSD2USI), which is documented to |
| 197 | // return the "indefinite integer value" if the range of the target type is |
| 198 | // exceeded. (only implemented for x86-64 to avoid having to deal with the |
| 199 | // non-existence of the 64-bit intrinsics on i386) |
| 200 | |
| 201 | if (std::numeric_limits<T>::is_signed) { |
| 202 | __m128d mv = _mm_set_sd(w: v); |
| 203 | # ifdef __AVX512F__ |
| 204 | // use explicit round control and suppress exceptions |
| 205 | if (sizeof(T) > 4) |
| 206 | *value = T(_mm_cvtt_roundsd_i64(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); |
| 207 | else |
| 208 | *value = _mm_cvtt_roundsd_i32(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| 209 | # else |
| 210 | *value = sizeof(T) > 4 ? T(_mm_cvttsd_si64(a: mv)) : _mm_cvttsd_si32(a: mv); |
| 211 | # endif |
| 212 | |
| 213 | // if *value is the "indefinite integer value", check if the original |
| 214 | // variable \a v is the same value (Tmin is an exact representation) |
| 215 | if (*value == Tmin && !_mm_ucomieq_sd(mv, _mm_set_sd(Tmin))) { |
| 216 | // v != Tmin, so it was out of range |
| 217 | if (v > 0) |
| 218 | *value = Tmax; |
| 219 | return false; |
| 220 | } |
| 221 | |
| 222 | // convert the integer back to double and compare for equality with v, |
| 223 | // to determine if we've lost any precision |
| 224 | __m128d mi = _mm_setzero_pd(); |
| 225 | mi = sizeof(T) > 4 ? _mm_cvtsi64_sd(mv, *value) : _mm_cvtsi32_sd(mv, *value); |
| 226 | return _mm_ucomieq_sd(a: mv, b: mi); |
| 227 | } |
| 228 | |
| 229 | # ifdef __AVX512F__ |
| 230 | if (!std::numeric_limits<T>::is_signed) { |
| 231 | // Same thing as above, but this function operates on absolute values |
| 232 | // and the "indefinite integer value" for the 64-bit unsigned |
| 233 | // conversion (Tmax) is not representable in double, so it can never be |
| 234 | // the result of an in-range conversion. This is implemented for AVX512 |
| 235 | // and later because of the unsigned conversion instruction. Converting |
| 236 | // to unsigned without losing an extra bit of precision prior to AVX512 |
| 237 | // is left to the compiler below. |
| 238 | |
| 239 | v = fabs(v); |
| 240 | __m128d mv = _mm_set_sd(v); |
| 241 | |
| 242 | // use explicit round control and suppress exceptions |
| 243 | if (sizeof(T) > 4) |
| 244 | *value = T(_mm_cvtt_roundsd_u64(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC)); |
| 245 | else |
| 246 | *value = _mm_cvtt_roundsd_u32(mv, _MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC); |
| 247 | |
| 248 | if (*value == Tmax) { |
| 249 | // no double can have an exact value of quint64(-1), but they can |
| 250 | // quint32(-1), so we need to compare for that |
| 251 | if (TypeIsLarger || _mm_ucomieq_sd(mv, _mm_set_sd(Tmax))) |
| 252 | return false; |
| 253 | } |
| 254 | |
| 255 | // return true if it was an exact conversion |
| 256 | __m128d mi = _mm_setzero_pd(); |
| 257 | mi = sizeof(T) > 4 ? _mm_cvtu64_sd(mv, *value) : _mm_cvtu32_sd(mv, *value); |
| 258 | return _mm_ucomieq_sd(mv, mi); |
| 259 | } |
| 260 | # endif |
| 261 | #endif |
| 262 | |
| 263 | double supremum; |
| 264 | if (std::numeric_limits<T>::is_signed) { |
| 265 | supremum = -1.0 * Tmin; // -1 * (-2^63) = 2^63, exact (for T = qint64) |
| 266 | *value = Tmin; |
| 267 | if (v < Tmin) |
| 268 | return false; |
| 269 | } else { |
| 270 | using ST = typename std::make_signed<T>::type; |
| 271 | supremum = -2.0 * (std::numeric_limits<ST>::min)(); // -2 * (-2^63) = 2^64, exact (for T = quint64) |
| 272 | v = fabs(x: v); |
| 273 | } |
| 274 | |
| 275 | *value = Tmax; |
| 276 | if (v >= supremum) |
| 277 | return false; |
| 278 | |
| 279 | // Now we can convert, these two conversions cannot be UB |
| 280 | *value = T(v); |
| 281 | |
| 282 | QT_WARNING_PUSH |
| 283 | QT_WARNING_DISABLE_FLOAT_COMPARE |
| 284 | |
| 285 | return *value == v; |
| 286 | |
| 287 | QT_WARNING_POP |
| 288 | } |
| 289 | |
| 290 | template <typename T> static |
| 291 | std::enable_if_t<std::is_floating_point_v<T> || std::is_same_v<T, qfloat16>, bool> |
| 292 | convertDoubleTo(double v, T *value, bool allow_precision_upgrade = true) |
| 293 | { |
| 294 | Q_UNUSED(allow_precision_upgrade); |
| 295 | constexpr T Huge = std::numeric_limits<T>::infinity(); |
| 296 | |
| 297 | if constexpr (std::numeric_limits<double>::max_exponent <= |
| 298 | std::numeric_limits<T>::max_exponent) { |
| 299 | // no UB can happen |
| 300 | *value = T(v); |
| 301 | return true; |
| 302 | } |
| 303 | |
| 304 | #if defined(__SSE2__) && (defined(Q_CC_GNU) || __has_extension(gnu_asm)) |
| 305 | // The x86 CVTSD2SH instruction from SSE2 does what we want: |
| 306 | // - converts out-of-range doubles to ±infinity and sets #O |
| 307 | // - converts underflows to zero and sets #U |
| 308 | // We need to clear any previously-stored exceptions from it before the |
| 309 | // operation (3-cycle cost) and obtain the new state afterwards (1 cycle). |
| 310 | |
| 311 | unsigned csr = _MM_MASK_MASK; // clear stored exception indicators |
| 312 | auto sse_check_result = [&](auto result) { |
| 313 | if ((csr & (_MM_EXCEPT_UNDERFLOW | _MM_EXCEPT_OVERFLOW)) == 0) |
| 314 | return true; |
| 315 | if (csr & _MM_EXCEPT_OVERFLOW) |
| 316 | return false; |
| 317 | |
| 318 | // According to IEEE 754[1], #U is also set when the result is tiny and |
| 319 | // inexact, but still non-zero, so detect that (this won't generate |
| 320 | // good code for types without hardware support). |
| 321 | // [1] https://en.wikipedia.org/wiki/Floating-point_arithmetic#Exception_handling |
| 322 | return result != 0; |
| 323 | }; |
| 324 | |
| 325 | // Written directly in assembly because both Clang and GCC have been |
| 326 | // observed to reorder the STMXCSR instruction above the conversion |
| 327 | // operation. MSVC generates horrid code when using the intrinsics anyway, |
| 328 | // so it's not a loss. |
| 329 | // See https://github.com/llvm/llvm-project/issues/83661. |
| 330 | if constexpr (std::is_same_v<T, float>) { |
| 331 | # ifdef __AVX__ |
| 332 | asm ("vldmxcsr %[csr]\n\t" |
| 333 | "vcvtsd2ss %[in], %[in], %[out]\n\t" |
| 334 | "vstmxcsr %[csr]" |
| 335 | : [csr] "+m" (csr), [out] "=v" (*value) : [in] "v" (v)); |
| 336 | # else |
| 337 | asm ("ldmxcsr %[csr]\n\t" |
| 338 | "cvtsd2ss %[in], %[out]\n\t" |
| 339 | "stmxcsr %[csr]" |
| 340 | : [csr] "+m" (csr), [out] "=v" (*value) : [in] "v" (v)); |
| 341 | # endif |
| 342 | return sse_check_result(*value); |
| 343 | } |
| 344 | |
| 345 | # if defined(__F16C__) || defined(__AVX512FP16__) |
| 346 | if constexpr (sizeof(T) == 2 && std::numeric_limits<T>::max_exponent == 16) { |
| 347 | // qfloat16 or std::float16_t, but not std::bfloat16_t or std::bfloat8_t |
| 348 | auto doConvert = [&](auto *out) { |
| 349 | asm ("vldmxcsr %[csr]\n\t" |
| 350 | # ifdef __AVX512FP16__ |
| 351 | // AVX512FP16 & AVX10 have an instruction for this |
| 352 | "vcvtsd2sh %[in], %[in], %[out]\n\t" |
| 353 | # else |
| 354 | "vcvtsd2ss %[in], %[in], %[out]\n\t" // sets DEST[MAXVL-1:128] := 0 |
| 355 | "vcvtps2ph %[rc], %[out], %[out]\n\t" |
| 356 | # endif |
| 357 | "vstmxcsr %[csr]" |
| 358 | : [csr] "+m" (csr), [out] "=v" (*out) |
| 359 | : [in] "v" (v), [rc] "i" (_MM_FROUND_CUR_DIRECTION) |
| 360 | ); |
| 361 | return sse_check_result(out); |
| 362 | }; |
| 363 | |
| 364 | if constexpr (std::is_same_v<T, qfloat16> && !std::is_void_v<typename T::NativeType>) { |
| 365 | typename T::NativeType tmp; |
| 366 | bool b = doConvert(&tmp); |
| 367 | *value = tmp; |
| 368 | return b; |
| 369 | } else { |
| 370 | # ifndef Q_CC_CLANG |
| 371 | // Clang can only implement this if it has a native FP16 type |
| 372 | return doConvert(value); |
| 373 | # endif |
| 374 | } |
| 375 | } |
| 376 | # endif |
| 377 | #endif // __SSE2__ && inline assembly |
| 378 | |
| 379 | if (!qt_is_finite(d: v) && std::numeric_limits<T>::has_infinity) { |
| 380 | // infinity (or NaN) |
| 381 | *value = T(v); |
| 382 | return true; |
| 383 | } |
| 384 | |
| 385 | // Check for in-range value to ensure the conversion is not UB (see the |
| 386 | // comment above for Standard language). |
| 387 | if (std::fabs(x: v) > double{(std::numeric_limits<T>::max)()}) { |
| 388 | *value = v < 0 ? -Huge : Huge; |
| 389 | return false; |
| 390 | } |
| 391 | |
| 392 | *value = T(v); |
| 393 | if (v != 0 && *value == 0) { |
| 394 | // Underflow through loss of precision |
| 395 | return false; |
| 396 | } |
| 397 | return true; |
| 398 | } |
| 399 | |
| 400 | template <typename T> inline bool add_overflow(T v1, T v2, T *r) { return qAddOverflow(v1, v2, r); } |
| 401 | template <typename T> inline bool sub_overflow(T v1, T v2, T *r) { return qSubOverflow(v1, v2, r); } |
| 402 | template <typename T> inline bool mul_overflow(T v1, T v2, T *r) { return qMulOverflow(v1, v2, r); } |
| 403 | |
| 404 | template <typename T, T V2> bool add_overflow(T v1, std::integral_constant<T, V2>, T *r) |
| 405 | { |
| 406 | return qAddOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r); |
| 407 | } |
| 408 | |
| 409 | template <auto V2, typename T> bool add_overflow(T v1, T *r) |
| 410 | { |
| 411 | return qAddOverflow<V2, T>(v1, r); |
| 412 | } |
| 413 | |
| 414 | template <typename T, T V2> bool sub_overflow(T v1, std::integral_constant<T, V2>, T *r) |
| 415 | { |
| 416 | return qSubOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r); |
| 417 | } |
| 418 | |
| 419 | template <auto V2, typename T> bool sub_overflow(T v1, T *r) |
| 420 | { |
| 421 | return qSubOverflow<V2, T>(v1, r); |
| 422 | } |
| 423 | |
| 424 | template <typename T, T V2> bool mul_overflow(T v1, std::integral_constant<T, V2>, T *r) |
| 425 | { |
| 426 | return qMulOverflow<T, V2>(v1, std::integral_constant<T, V2>{}, r); |
| 427 | } |
| 428 | |
| 429 | template <auto V2, typename T> bool mul_overflow(T v1, T *r) |
| 430 | { |
| 431 | return qMulOverflow<V2, T>(v1, r); |
| 432 | } |
| 433 | } |
| 434 | #endif // Q_QDOC |
| 435 | |
| 436 | template <typename To, typename From> |
| 437 | static constexpr auto qt_saturate(From x) |
| 438 | { |
| 439 | return q26::saturate_cast<To>(x); |
| 440 | } |
| 441 | |
| 442 | QT_END_NAMESPACE |
| 443 | |
| 444 | #endif // QNUMERIC_P_H |
| 445 | |