| 1 | // Copyright (C) 2019 The Qt Company Ltd. |
| 2 | // SPDX-License-Identifier: LicenseRef-Qt-Commercial OR LGPL-3.0-only OR GPL-2.0-only OR GPL-3.0-only |
| 3 | #ifndef QV4STATICVALUE_P_H |
| 4 | #define QV4STATICVALUE_P_H |
| 5 | |
| 6 | // |
| 7 | // W A R N I N G |
| 8 | // ------------- |
| 9 | // |
| 10 | // This file is not part of the Qt API. It exists purely as an |
| 11 | // implementation detail. This header file may change from version to |
| 12 | // version without notice, or even be removed. |
| 13 | // |
| 14 | // We mean it. |
| 15 | // |
| 16 | |
| 17 | #include <qjsnumbercoercion.h> |
| 18 | |
| 19 | #include <QtCore/private/qnumeric_p.h> |
| 20 | #include <private/qtqmlglobal_p.h> |
| 21 | |
| 22 | #include <cstring> |
| 23 | |
| 24 | #ifdef QT_NO_DEBUG |
| 25 | #define QV4_NEARLY_ALWAYS_INLINE Q_ALWAYS_INLINE |
| 26 | #else |
| 27 | #define QV4_NEARLY_ALWAYS_INLINE inline |
| 28 | #endif |
| 29 | |
| 30 | QT_BEGIN_NAMESPACE |
| 31 | |
| 32 | namespace QV4 { |
| 33 | |
| 34 | // ReturnedValue is used to return values from runtime methods |
| 35 | // the type has to be a primitive type (no struct or union), so that the compiler |
| 36 | // will return it in a register on all platforms. |
| 37 | // It will be returned in rax on x64, [eax,edx] on x86 and [r0,r1] on arm |
| 38 | typedef quint64 ReturnedValue; |
| 39 | |
| 40 | namespace Heap { |
| 41 | struct Base; |
| 42 | } |
| 43 | |
| 44 | struct StaticValue |
| 45 | { |
| 46 | using HeapBasePtr = Heap::Base *; |
| 47 | |
| 48 | StaticValue() = default; |
| 49 | constexpr StaticValue(quint64 val) : _val(val) {} |
| 50 | |
| 51 | StaticValue &operator=(ReturnedValue v) |
| 52 | { |
| 53 | _val = v; |
| 54 | return *this; |
| 55 | } |
| 56 | |
| 57 | template<typename Value> |
| 58 | StaticValue &operator=(const Value &); |
| 59 | |
| 60 | template<typename Value> |
| 61 | const Value &asValue() const; |
| 62 | |
| 63 | template<typename Value> |
| 64 | Value &asValue(); |
| 65 | |
| 66 | /* |
| 67 | We use 8 bytes for a value. In order to store all possible values we employ a variant of NaN |
| 68 | boxing. A "special" Double is indicated by a number that has the 11 exponent bits set to 1. |
| 69 | Those can be NaN, positive or negative infinity. We only store one variant of NaN: The sign |
| 70 | bit has to be off and the bit after the exponent ("quiet bit") has to be on. However, since |
| 71 | the exponent bits are enough to identify special doubles, we can use a different bit as |
| 72 | discriminator to tell us how the rest of the bits (including quiet and sign) are to be |
| 73 | interpreted. This bit is bit 48. If set, we have an unmanaged value, which includes the |
| 74 | special doubles and various other values. If unset, we have a managed value, and all of the |
| 75 | other bits can be used to assemble a pointer. |
| 76 | |
| 77 | On 32bit systems the pointer can just live in the lower 4 bytes. On 64 bit systems the lower |
| 78 | 48 bits can be used for verbatim pointer bits. However, since all our heap objects are |
| 79 | aligned to 32 bytes, we can use the 5 least significant bits of the pointer to store, e.g. |
| 80 | pointer tags on android. The same holds for the 3 bits between the double exponent and |
| 81 | bit 48. |
| 82 | |
| 83 | With that out of the way, we can use the other bits to store different values. |
| 84 | |
| 85 | We xor Doubles with (0x7ff48000 << 32). That has the effect that any double with all the |
| 86 | exponent bits set to 0 is one of our special doubles. Those special doubles then get the |
| 87 | other two bits in the mask (Special and Number) set to 1, as they cannot have 1s in those |
| 88 | positions to begin with. |
| 89 | |
| 90 | We dedicate further bits to integer-convertible and bool-or-int. With those bits we can |
| 91 | describe all values we need to store. |
| 92 | |
| 93 | Undefined is encoded as a managed pointer with value 0. This is the same as a nullptr. |
| 94 | |
| 95 | Specific bit-sequences: |
| 96 | 0 = always 0 |
| 97 | 1 = always 1 |
| 98 | x = stored value |
| 99 | y = stored value, shifted to different position |
| 100 | a = xor-ed bits, where at least one bit is set |
| 101 | b = xor-ed bits |
| 102 | |
| 103 | 32109876 54321098 76543210 98765432 10987654 32109876 54321098 76543210 | |
| 104 | 66665555 55555544 44444444 33333333 33222222 22221111 11111100 00000000 | JS Value |
| 105 | ------------------------------------------------------------------------+-------------- |
| 106 | 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 | Undefined |
| 107 | y0000000 0000yyy0 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxyyyyy | Managed (heap pointer) |
| 108 | 00000000 00001101 10000000 00000000 00000000 00000000 00000000 00000000 | NaN |
| 109 | 00000000 00000101 10000000 00000000 00000000 00000000 00000000 00000000 | +Inf |
| 110 | 10000000 00000101 10000000 00000000 00000000 00000000 00000000 00000000 | -Inf |
| 111 | xaaaaaaa aaaaxbxb bxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | double |
| 112 | 00000000 00000001 00000000 00000000 00000000 00000000 00000000 00000000 | empty (non-sparse array hole) |
| 113 | 00000000 00000011 00000000 00000000 00000000 00000000 00000000 00000000 | Null |
| 114 | 00000000 00000011 10000000 00000000 00000000 00000000 00000000 0000000x | Bool |
| 115 | 00000000 00000011 11000000 00000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx | Int |
| 116 | ^ ^^^ ^^ |
| 117 | | ||| || |
| 118 | | ||| |+-> Number |
| 119 | | ||| +--> Int or Bool |
| 120 | | ||+----> Unmanaged |
| 121 | | |+-----> Integer compatible |
| 122 | | +------> Special double |
| 123 | +--------------------> Double sign, also used for special doubles |
| 124 | */ |
| 125 | |
| 126 | quint64 _val; |
| 127 | |
| 128 | QV4_NEARLY_ALWAYS_INLINE constexpr quint64 &rawValueRef() { return _val; } |
| 129 | QV4_NEARLY_ALWAYS_INLINE constexpr quint64 rawValue() const { return _val; } |
| 130 | QV4_NEARLY_ALWAYS_INLINE constexpr void setRawValue(quint64 raw) { _val = raw; } |
| 131 | |
| 132 | #if Q_BYTE_ORDER == Q_LITTLE_ENDIAN |
| 133 | static inline int valueOffset() { return 0; } |
| 134 | static inline int tagOffset() { return 4; } |
| 135 | #else // !Q_LITTLE_ENDIAN |
| 136 | static inline int valueOffset() { return 4; } |
| 137 | static inline int tagOffset() { return 0; } |
| 138 | #endif |
| 139 | static inline constexpr quint64 tagValue(quint32 tag, quint32 value) { return quint64(tag) << Tag_Shift | value; } |
| 140 | QV4_NEARLY_ALWAYS_INLINE constexpr void setTagValue(quint32 tag, quint32 value) { _val = quint64(tag) << Tag_Shift | value; } |
| 141 | QV4_NEARLY_ALWAYS_INLINE constexpr quint32 value() const { return _val & quint64(~quint32(0)); } |
| 142 | QV4_NEARLY_ALWAYS_INLINE constexpr quint32 tag() const { return _val >> Tag_Shift; } |
| 143 | QV4_NEARLY_ALWAYS_INLINE constexpr void setTag(quint32 tag) { setTagValue(tag, value: value()); } |
| 144 | |
| 145 | QV4_NEARLY_ALWAYS_INLINE constexpr int int_32() const |
| 146 | { |
| 147 | return int(value()); |
| 148 | } |
| 149 | QV4_NEARLY_ALWAYS_INLINE constexpr void setInt_32(int i) |
| 150 | { |
| 151 | setTagValue(tag: quint32(QuickType::Integer), value: quint32(i)); |
| 152 | } |
| 153 | QV4_NEARLY_ALWAYS_INLINE uint uint_32() const { return value(); } |
| 154 | |
| 155 | QV4_NEARLY_ALWAYS_INLINE constexpr void setEmpty() |
| 156 | { |
| 157 | setTagValue(tag: quint32(QuickType::Empty), value: 0); |
| 158 | } |
| 159 | |
| 160 | enum class TagBit { |
| 161 | // s: sign bit |
| 162 | // e: double exponent bit |
| 163 | // u: upper 3 bits if managed |
| 164 | // m: bit 48, denotes "unmanaged" if 1 |
| 165 | // p: significant pointer bits (some re-used for non-managed) |
| 166 | // seeeeeeeeeeeuuumpppp |
| 167 | SpecialNegative = 0b10000000000000000000 << 12, |
| 168 | SpecialQNaN = 0b00000000000010000000 << 12, |
| 169 | Special = 0b00000000000001000000 << 12, |
| 170 | IntCompat = 0b00000000000000100000 << 12, |
| 171 | Unmanaged = 0b00000000000000010000 << 12, |
| 172 | IntOrBool = 0b00000000000000001000 << 12, |
| 173 | Number = 0b00000000000000000100 << 12, |
| 174 | }; |
| 175 | |
| 176 | static inline constexpr quint64 tagBitMask(TagBit bit) { return quint64(bit) << Tag_Shift; } |
| 177 | |
| 178 | enum Type { |
| 179 | // Managed, Double and undefined are not directly encoded |
| 180 | Managed_Type = 0, |
| 181 | Double_Type = 1, |
| 182 | Undefined_Type = 2, |
| 183 | |
| 184 | Empty_Type = quint32(TagBit::Unmanaged), |
| 185 | Null_Type = Empty_Type | quint32(TagBit::IntCompat), |
| 186 | Boolean_Type = Null_Type | quint32(TagBit::IntOrBool), |
| 187 | Integer_Type = Boolean_Type | quint32(TagBit::Number) |
| 188 | }; |
| 189 | |
| 190 | enum { |
| 191 | Tag_Shift = 32, |
| 192 | |
| 193 | IsIntegerConvertible_Shift = 48, |
| 194 | IsIntegerConvertible_Value = 3, // Unmanaged | IntCompat after shifting |
| 195 | |
| 196 | IsIntegerOrBool_Shift = 47, |
| 197 | IsIntegerOrBool_Value = 7, // Unmanaged | IntCompat | IntOrBool after shifting |
| 198 | }; |
| 199 | |
| 200 | static_assert(IsIntegerConvertible_Value == |
| 201 | (quint32(TagBit::IntCompat) | quint32(TagBit::Unmanaged)) |
| 202 | >> (IsIntegerConvertible_Shift - Tag_Shift)); |
| 203 | |
| 204 | static_assert(IsIntegerOrBool_Value == |
| 205 | (quint32(TagBit::IntOrBool) | quint32(TagBit::IntCompat) | quint32(TagBit::Unmanaged)) |
| 206 | >> (IsIntegerOrBool_Shift - Tag_Shift)); |
| 207 | |
| 208 | static constexpr quint64 ExponentMask = 0b0111111111110000ull << 48; |
| 209 | |
| 210 | static constexpr quint64 Top1Mask = 0b1000000000000000ull << 48; |
| 211 | static constexpr quint64 Upper3Mask = 0b0000000000001110ull << 48; |
| 212 | static constexpr quint64 Lower5Mask = 0b0000000000011111ull; |
| 213 | |
| 214 | static constexpr quint64 ManagedMask = ExponentMask | quint64(TagBit::Unmanaged) << Tag_Shift; |
| 215 | static constexpr quint64 DoubleMask = ManagedMask | quint64(TagBit::Special) << Tag_Shift; |
| 216 | static constexpr quint64 NumberMask = ManagedMask | quint64(TagBit::Number) << Tag_Shift; |
| 217 | static constexpr quint64 IntOrBoolMask = ManagedMask | quint64(TagBit::IntOrBool) << Tag_Shift; |
| 218 | static constexpr quint64 IntCompatMask = ManagedMask | quint64(TagBit::IntCompat) << Tag_Shift; |
| 219 | |
| 220 | static constexpr quint64 EncodeMask = DoubleMask | NumberMask; |
| 221 | |
| 222 | static constexpr quint64 DoubleDiscriminator |
| 223 | = ((quint64(TagBit::Unmanaged) | quint64(TagBit::Special)) << Tag_Shift); |
| 224 | static constexpr quint64 NumberDiscriminator |
| 225 | = ((quint64(TagBit::Unmanaged) | quint64(TagBit::Number)) << Tag_Shift); |
| 226 | |
| 227 | // Things we can immediately determine by just looking at the upper 4 bytes. |
| 228 | enum class QuickType : quint32 { |
| 229 | // Managed takes precedence over all others. That is, other bits may be set if it's managed. |
| 230 | // However, since all others include the Unmanaged bit, we can still check them with simple |
| 231 | // equality operations. |
| 232 | Managed = Managed_Type, |
| 233 | |
| 234 | Empty = Empty_Type, |
| 235 | Null = Null_Type, |
| 236 | Boolean = Boolean_Type, |
| 237 | Integer = Integer_Type, |
| 238 | |
| 239 | PlusInf = quint32(TagBit::Number) | quint32(TagBit::Special) | quint32(TagBit::Unmanaged), |
| 240 | MinusInf = PlusInf | quint32(TagBit::SpecialNegative), |
| 241 | NaN = PlusInf | quint32(TagBit::SpecialQNaN), |
| 242 | MinusNaN = NaN | quint32(TagBit::SpecialNegative), // Can happen with UMinus on NaN |
| 243 | // All other values are doubles |
| 244 | }; |
| 245 | |
| 246 | // Aliases for easier porting. Remove those when possible |
| 247 | using ValueTypeInternal = QuickType; |
| 248 | enum { |
| 249 | QT_Empty = Empty_Type, |
| 250 | QT_Null = Null_Type, |
| 251 | QT_Bool = Boolean_Type, |
| 252 | QT_Int = Integer_Type, |
| 253 | QuickType_Shift = Tag_Shift, |
| 254 | }; |
| 255 | |
| 256 | inline Type type() const |
| 257 | { |
| 258 | const quint64 masked = _val & DoubleMask; |
| 259 | if (masked >= DoubleDiscriminator) |
| 260 | return Double_Type; |
| 261 | |
| 262 | // Any bit set in the exponent would have been caught above, as well as both bits being set. |
| 263 | // None of them being set as well as only Special being set means "managed". |
| 264 | // Only Unmanaged being set means "unmanaged". That's all remaining options. |
| 265 | if (masked != tagBitMask(bit: TagBit::Unmanaged)) { |
| 266 | Q_ASSERT((_val & tagBitMask(TagBit::Unmanaged)) == 0); |
| 267 | return isUndefined() ? Undefined_Type : Managed_Type; |
| 268 | } |
| 269 | |
| 270 | const Type ret = Type(tag()); |
| 271 | Q_ASSERT( |
| 272 | ret == Empty_Type || |
| 273 | ret == Null_Type || |
| 274 | ret == Boolean_Type || |
| 275 | ret == Integer_Type); |
| 276 | return ret; |
| 277 | } |
| 278 | |
| 279 | inline quint64 quickType() const { return (_val >> QuickType_Shift); } |
| 280 | |
| 281 | // used internally in property |
| 282 | inline bool isEmpty() const { return tag() == quint32(ValueTypeInternal::Empty); } |
| 283 | inline bool isNull() const { return tag() == quint32(ValueTypeInternal::Null); } |
| 284 | inline bool isBoolean() const { return tag() == quint32(ValueTypeInternal::Boolean); } |
| 285 | inline bool isInteger() const { return tag() == quint32(ValueTypeInternal::Integer); } |
| 286 | inline bool isNullOrUndefined() const { return isNull() || isUndefined(); } |
| 287 | inline bool isUndefined() const { return _val == 0; } |
| 288 | |
| 289 | inline bool isDouble() const |
| 290 | { |
| 291 | // If any of the flipped exponent bits are 1, it's a regular double, and the masked tag is |
| 292 | // larger than Unmanaged | Special. |
| 293 | // |
| 294 | // If all (flipped) exponent bits are 0: |
| 295 | // 1. If Unmanaged bit is 0, it's managed |
| 296 | // 2. If the Unmanaged bit it is 1, and the Special bit is 0, it's not a special double |
| 297 | // 3. If both are 1, it is a special double and the masked tag equals Unmanaged | Special. |
| 298 | |
| 299 | return (_val & DoubleMask) >= DoubleDiscriminator; |
| 300 | } |
| 301 | |
| 302 | inline bool isNumber() const |
| 303 | { |
| 304 | // If any of the flipped exponent bits are 1, it's a regular double, and the masked tag is |
| 305 | // larger than Unmanaged | Number. |
| 306 | // |
| 307 | // If all (flipped) exponent bits are 0: |
| 308 | // 1. If Unmanaged bit is 0, it's managed |
| 309 | // 2. If the Unmanaged bit it is 1, and the Number bit is 0, it's not number |
| 310 | // 3. If both are 1, it is a number and masked tag equals Unmanaged | Number. |
| 311 | |
| 312 | return (_val & NumberMask) >= NumberDiscriminator; |
| 313 | } |
| 314 | |
| 315 | inline bool isManagedOrUndefined() const { return (_val & ManagedMask) == 0; } |
| 316 | |
| 317 | // If any other bit is set in addition to the managed mask, it's not undefined. |
| 318 | inline bool isManaged() const |
| 319 | { |
| 320 | return isManagedOrUndefined() && !isUndefined(); |
| 321 | } |
| 322 | |
| 323 | inline bool isIntOrBool() const |
| 324 | { |
| 325 | // It's an int or bool if all the exponent bits are 0, |
| 326 | // and the "int or bool" bit as well as the "umanaged" bit are set, |
| 327 | return (_val >> IsIntegerOrBool_Shift) == IsIntegerOrBool_Value; |
| 328 | } |
| 329 | |
| 330 | inline bool integerCompatible() const { |
| 331 | Q_ASSERT(!isEmpty()); |
| 332 | return (_val >> IsIntegerConvertible_Shift) == IsIntegerConvertible_Value; |
| 333 | } |
| 334 | |
| 335 | static inline bool integerCompatible(StaticValue a, StaticValue b) { |
| 336 | return a.integerCompatible() && b.integerCompatible(); |
| 337 | } |
| 338 | |
| 339 | static inline bool bothDouble(StaticValue a, StaticValue b) { |
| 340 | return a.isDouble() && b.isDouble(); |
| 341 | } |
| 342 | |
| 343 | inline bool isNaN() const |
| 344 | { |
| 345 | switch (QuickType(tag())) { |
| 346 | case QuickType::NaN: |
| 347 | case QuickType::MinusNaN: |
| 348 | return true; |
| 349 | default: |
| 350 | return false; |
| 351 | } |
| 352 | } |
| 353 | |
| 354 | inline bool isPositiveInt() const { |
| 355 | return isInteger() && int_32() >= 0; |
| 356 | } |
| 357 | |
| 358 | QV4_NEARLY_ALWAYS_INLINE double doubleValue() const { |
| 359 | Q_ASSERT(isDouble()); |
| 360 | double d; |
| 361 | const quint64 unmasked = _val ^ EncodeMask; |
| 362 | memcpy(dest: &d, src: &unmasked, n: 8); |
| 363 | return d; |
| 364 | } |
| 365 | |
| 366 | QV4_NEARLY_ALWAYS_INLINE void setDouble(double d) { |
| 367 | if (qt_is_nan(d)) { |
| 368 | // We cannot store just any NaN. It has to be a NaN with only the quiet bit |
| 369 | // set in the upper bits of the mantissa and the sign bit either on or off. |
| 370 | // qt_qnan() happens to produce such a thing via std::numeric_limits, |
| 371 | // but this is actually not guaranteed. Therefore, we make our own. |
| 372 | _val = (quint64(std::signbit(x: d) ? QuickType::MinusNaN : QuickType::NaN) << Tag_Shift); |
| 373 | Q_ASSERT(isNaN()); |
| 374 | } else { |
| 375 | memcpy(dest: &_val, src: &d, n: 8); |
| 376 | _val ^= EncodeMask; |
| 377 | } |
| 378 | |
| 379 | Q_ASSERT(isDouble()); |
| 380 | } |
| 381 | |
| 382 | inline bool isInt32() { |
| 383 | if (tag() == quint32(QuickType::Integer)) |
| 384 | return true; |
| 385 | if (isDouble()) { |
| 386 | double d = doubleValue(); |
| 387 | if (isInt32(d)) { |
| 388 | setInt_32(int(d)); |
| 389 | return true; |
| 390 | } |
| 391 | } |
| 392 | return false; |
| 393 | } |
| 394 | |
| 395 | QV4_NEARLY_ALWAYS_INLINE static bool isInt32(double d) { |
| 396 | int i = QJSNumberCoercion::toInteger(d); |
| 397 | return (i == d && !(d == 0 && std::signbit(x: d))); |
| 398 | } |
| 399 | |
| 400 | double asDouble() const { |
| 401 | if (tag() == quint32(QuickType::Integer)) |
| 402 | return int_32(); |
| 403 | return doubleValue(); |
| 404 | } |
| 405 | |
| 406 | bool booleanValue() const { |
| 407 | return int_32(); |
| 408 | } |
| 409 | |
| 410 | int integerValue() const { |
| 411 | return int_32(); |
| 412 | } |
| 413 | |
| 414 | inline bool tryIntegerConversion() { |
| 415 | bool b = integerCompatible(); |
| 416 | if (b) |
| 417 | setTagValue(tag: quint32(QuickType::Integer), value: value()); |
| 418 | return b; |
| 419 | } |
| 420 | |
| 421 | bool toBoolean() const { |
| 422 | if (integerCompatible()) |
| 423 | return static_cast<bool>(int_32()); |
| 424 | |
| 425 | if (isManagedOrUndefined()) |
| 426 | return false; |
| 427 | |
| 428 | // double |
| 429 | const double d = doubleValue(); |
| 430 | return d && !std::isnan(x: d); |
| 431 | } |
| 432 | |
| 433 | inline int toInt32() const |
| 434 | { |
| 435 | switch (type()) { |
| 436 | case Null_Type: |
| 437 | case Boolean_Type: |
| 438 | case Integer_Type: |
| 439 | return int_32(); |
| 440 | case Double_Type: |
| 441 | return QJSNumberCoercion::toInteger(d: doubleValue()); |
| 442 | case Empty_Type: |
| 443 | case Undefined_Type: |
| 444 | case Managed_Type: |
| 445 | return 0; // Coercion of NaN to int, results in 0; |
| 446 | } |
| 447 | |
| 448 | Q_UNREACHABLE_RETURN(0); |
| 449 | } |
| 450 | |
| 451 | ReturnedValue *data_ptr() { return &_val; } |
| 452 | constexpr ReturnedValue asReturnedValue() const { return _val; } |
| 453 | constexpr static StaticValue fromReturnedValue(ReturnedValue val) { return {val}; } |
| 454 | |
| 455 | inline static constexpr StaticValue emptyValue() { return { tagValue(tag: quint32(QuickType::Empty), value: 0) }; } |
| 456 | static inline constexpr StaticValue fromBoolean(bool b) { return { tagValue(tag: quint32(QuickType::Boolean), value: b) }; } |
| 457 | static inline constexpr StaticValue fromInt32(int i) { return { tagValue(tag: quint32(QuickType::Integer), value: quint32(i)) }; } |
| 458 | inline static constexpr StaticValue undefinedValue() { return { 0 }; } |
| 459 | static inline constexpr StaticValue nullValue() { return { tagValue(tag: quint32(QuickType::Null), value: 0) }; } |
| 460 | |
| 461 | static inline StaticValue fromDouble(double d) |
| 462 | { |
| 463 | StaticValue v; |
| 464 | v.setDouble(d); |
| 465 | return v; |
| 466 | } |
| 467 | |
| 468 | static inline StaticValue fromUInt32(uint i) |
| 469 | { |
| 470 | StaticValue v; |
| 471 | if (i < uint(std::numeric_limits<int>::max())) { |
| 472 | v.setTagValue(tag: quint32(QuickType::Integer), value: i); |
| 473 | } else { |
| 474 | v.setDouble(i); |
| 475 | } |
| 476 | return v; |
| 477 | } |
| 478 | |
| 479 | static double toInteger(double d) |
| 480 | { |
| 481 | return QJSNumberCoercion::roundTowards0(d); |
| 482 | } |
| 483 | |
| 484 | static int toInt32(double d) |
| 485 | { |
| 486 | return QJSNumberCoercion::toInteger(d); |
| 487 | } |
| 488 | |
| 489 | static unsigned int toUInt32(double d) |
| 490 | { |
| 491 | return static_cast<uint>(toInt32(d)); |
| 492 | } |
| 493 | |
| 494 | // While a value containing a Heap::Base* is not actually static, we still implement |
| 495 | // the setting and retrieving of heap pointers here in order to have the encoding |
| 496 | // scheme completely in one place. |
| 497 | |
| 498 | #if QT_POINTER_SIZE == 8 |
| 499 | |
| 500 | // All pointer shifts are from more significant to less significant bits. |
| 501 | // When encoding, we shift right by that amount. When decoding, we shift left. |
| 502 | // Negative numbers mean shifting the other direction. 0 means no shifting. |
| 503 | // |
| 504 | // The IA64 and Sparc64 cases are mostly there to demonstrate the idea. Sparc64 |
| 505 | // and IA64 are not officially supported, but we can expect more platforms with |
| 506 | // similar "problems" in the future. |
| 507 | enum PointerShift { |
| 508 | #if 0 && defined(Q_OS_ANDROID) && defined(Q_PROCESSOR_ARM_64) |
| 509 | // We used to assume that Android on arm64 uses the top byte to store pointer tags. |
| 510 | // However, at least currently, the pointer tags are only applied on new/malloc and |
| 511 | // delete/free, not on mmap() and munmap(). We manage the JS heap directly using |
| 512 | // mmap, so we don't have to preserve any tags. |
| 513 | // |
| 514 | // If this ever changes, here is how to preserve the top byte: |
| 515 | // Move it to Upper3 and Lower5. |
| 516 | Top1Shift = 0, |
| 517 | Upper3Shift = 12, |
| 518 | Lower5Shift = 56, |
| 519 | #elif defined(Q_PROCESSOR_IA64) |
| 520 | // On ia64, bits 63-61 in a 64-bit pointer are used to store the virtual region |
| 521 | // number. We can move those to Upper3. |
| 522 | Top1Shift = 0, |
| 523 | Upper3Shift = 12, |
| 524 | Lower5Shift = 0, |
| 525 | #elif defined(Q_PROCESSOR_SPARC_64) |
| 526 | // Sparc64 wants to use 52 bits for pointers. |
| 527 | // Upper3 can stay where it is, bit48 moves to the top bit. |
| 528 | Top1Shift = -15, |
| 529 | Upper3Shift = 0, |
| 530 | Lower5Shift = 0, |
| 531 | #elif 0 // TODO: Once we need 5-level page tables, add the appropriate check here. |
| 532 | // With 5-level page tables (as possible on linux) we need 57 address bits. |
| 533 | // Upper3 can stay where it is, bit48 moves to the top bit, the rest moves to Lower5. |
| 534 | Top1Shift = -15, |
| 535 | Upper3Shift = 0, |
| 536 | Lower5Shift = 52, |
| 537 | #else |
| 538 | Top1Shift = 0, |
| 539 | Upper3Shift = 0, |
| 540 | Lower5Shift = 0 |
| 541 | #endif |
| 542 | }; |
| 543 | |
| 544 | template<int Offset, quint64 Mask> |
| 545 | static constexpr quint64 movePointerBits(quint64 val) |
| 546 | { |
| 547 | if constexpr (Offset > 0) |
| 548 | return (val & ~Mask) | ((val & Mask) >> Offset); |
| 549 | if constexpr (Offset < 0) |
| 550 | return (val & ~Mask) | ((val & Mask) << -Offset); |
| 551 | return val; |
| 552 | } |
| 553 | |
| 554 | template<int Offset, quint64 Mask> |
| 555 | static constexpr quint64 storePointerBits(quint64 val) |
| 556 | { |
| 557 | constexpr quint64 OriginMask = movePointerBits<-Offset, Mask>(Mask); |
| 558 | return movePointerBits<Offset, OriginMask>(val); |
| 559 | } |
| 560 | |
| 561 | template<int Offset, quint64 Mask> |
| 562 | static constexpr quint64 retrievePointerBits(quint64 val) |
| 563 | { |
| 564 | return movePointerBits<-Offset, Mask>(val); |
| 565 | } |
| 566 | |
| 567 | QML_NEARLY_ALWAYS_INLINE HeapBasePtr m() const |
| 568 | { |
| 569 | Q_ASSERT(!(_val & ManagedMask)); |
| 570 | |
| 571 | // Re-assemble the pointer from its fragments. |
| 572 | const quint64 tmp = retrievePointerBits<Top1Shift, Top1Mask>( |
| 573 | val: retrievePointerBits<Upper3Shift, Upper3Mask>( |
| 574 | val: retrievePointerBits<Lower5Shift, Lower5Mask>(val: _val))); |
| 575 | |
| 576 | HeapBasePtr b; |
| 577 | memcpy(dest: &b, src: &tmp, n: 8); |
| 578 | return b; |
| 579 | } |
| 580 | QML_NEARLY_ALWAYS_INLINE void setM(HeapBasePtr b) |
| 581 | { |
| 582 | quint64 tmp; |
| 583 | memcpy(dest: &tmp, src: &b, n: 8); |
| 584 | |
| 585 | // Has to be aligned to 32 bytes |
| 586 | Q_ASSERT(!(tmp & Lower5Mask)); |
| 587 | |
| 588 | // MinGW produces a bogus warning about array bounds. |
| 589 | // There is no array access here. |
| 590 | QT_WARNING_PUSH |
| 591 | QT_WARNING_DISABLE_GCC("-Warray-bounds" ) |
| 592 | |
| 593 | // Encode the pointer. |
| 594 | _val = storePointerBits<Top1Shift, Top1Mask>( |
| 595 | val: storePointerBits<Upper3Shift, Upper3Mask>( |
| 596 | val: storePointerBits<Lower5Shift, Lower5Mask>(val: tmp))); |
| 597 | |
| 598 | QT_WARNING_POP |
| 599 | } |
| 600 | #elif QT_POINTER_SIZE == 4 |
| 601 | QML_NEARLY_ALWAYS_INLINE HeapBasePtr m() const |
| 602 | { |
| 603 | Q_STATIC_ASSERT(sizeof(HeapBasePtr) == sizeof(quint32)); |
| 604 | HeapBasePtr b; |
| 605 | quint32 v = value(); |
| 606 | memcpy(&b, &v, 4); |
| 607 | return b; |
| 608 | } |
| 609 | QML_NEARLY_ALWAYS_INLINE void setM(HeapBasePtr b) |
| 610 | { |
| 611 | quint32 v; |
| 612 | memcpy(&v, &b, 4); |
| 613 | setTagValue(quint32(QuickType::Managed), v); |
| 614 | } |
| 615 | #else |
| 616 | # error "unsupported pointer size" |
| 617 | #endif |
| 618 | }; |
| 619 | Q_STATIC_ASSERT(std::is_trivial_v<StaticValue>); |
| 620 | |
| 621 | struct Encode { |
| 622 | static constexpr ReturnedValue undefined() { |
| 623 | return StaticValue::undefinedValue().asReturnedValue(); |
| 624 | } |
| 625 | static constexpr ReturnedValue null() { |
| 626 | return StaticValue::nullValue().asReturnedValue(); |
| 627 | } |
| 628 | |
| 629 | explicit constexpr Encode(bool b) |
| 630 | : val(StaticValue::fromBoolean(b).asReturnedValue()) |
| 631 | { |
| 632 | } |
| 633 | explicit Encode(double d) { |
| 634 | val = StaticValue::fromDouble(d).asReturnedValue(); |
| 635 | } |
| 636 | explicit constexpr Encode(int i) |
| 637 | : val(StaticValue::fromInt32(i).asReturnedValue()) |
| 638 | { |
| 639 | } |
| 640 | explicit Encode(uint i) { |
| 641 | val = StaticValue::fromUInt32(i).asReturnedValue(); |
| 642 | } |
| 643 | explicit constexpr Encode(ReturnedValue v) |
| 644 | : val(v) |
| 645 | { |
| 646 | } |
| 647 | constexpr Encode(StaticValue v) |
| 648 | : val(v.asReturnedValue()) |
| 649 | { |
| 650 | } |
| 651 | |
| 652 | template<typename HeapBase> |
| 653 | explicit Encode(HeapBase *o); |
| 654 | |
| 655 | explicit Encode(StaticValue *o) { |
| 656 | Q_ASSERT(o); |
| 657 | val = o->asReturnedValue(); |
| 658 | } |
| 659 | |
| 660 | static ReturnedValue smallestNumber(double d) { |
| 661 | if (StaticValue::isInt32(d)) |
| 662 | return Encode(static_cast<int>(d)); |
| 663 | else |
| 664 | return Encode(d); |
| 665 | } |
| 666 | |
| 667 | constexpr operator ReturnedValue() const { |
| 668 | return val; |
| 669 | } |
| 670 | quint64 val; |
| 671 | private: |
| 672 | explicit Encode(void *); |
| 673 | }; |
| 674 | |
| 675 | } |
| 676 | |
| 677 | QT_END_NAMESPACE |
| 678 | |
| 679 | #endif // QV4STATICVALUE_P_H |
| 680 | |